University of Mosul College of Science

4th Year/Geology Practical ore geology

Lab No.1 Monday 9/10/2017 Concentration Factor (C.F.)

The table below represents the average crustal abundance and the average minimum exploitable grade (cut-off grade) of several elements.

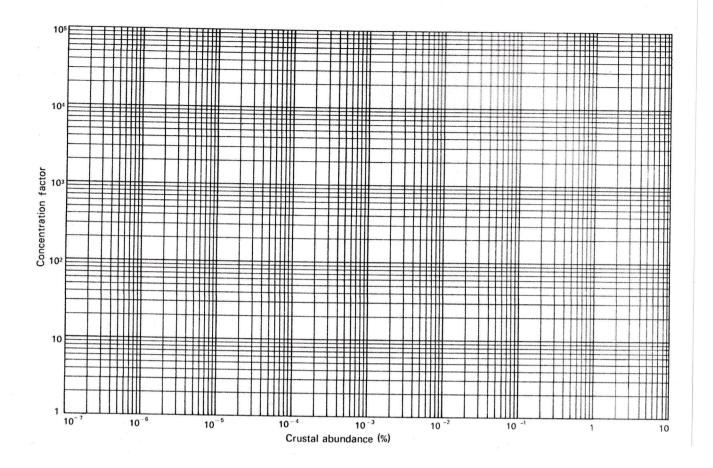
average minimum exploitable grade (cut-off grade) of several ele						
No.	Element Name	Symbol	Average Crustal Abundance wt%	average minimum exploitable grade wt%	Concentration Factor (C.F.)	
1	Aluminium	Al	8	30		
2	Iron	Fe	5	25		
3	Copper	Cu	0.005	0.5		
4	Nickel	Ni	0.007	1.0		
5	Zinc	Zn	0.007	2.5		
6	Manganese	Mn	0.09	35	-	
7	Tin	Sn	0.0002	0.2		
8	Chromium	Cr	0.01	30		
9	Lead	Pb	0.001	2		
10	Gold	Au	0.0000004	0.0008		
11	Tungsten	W	0.0001	0.7		
12	Mercury	Hg	0.000008	0.2	119	

(1) Classify these elements geochemically as:

Abundant (A)

Scarce (S)

(2) Calculate the concentration factor for each element knowing that

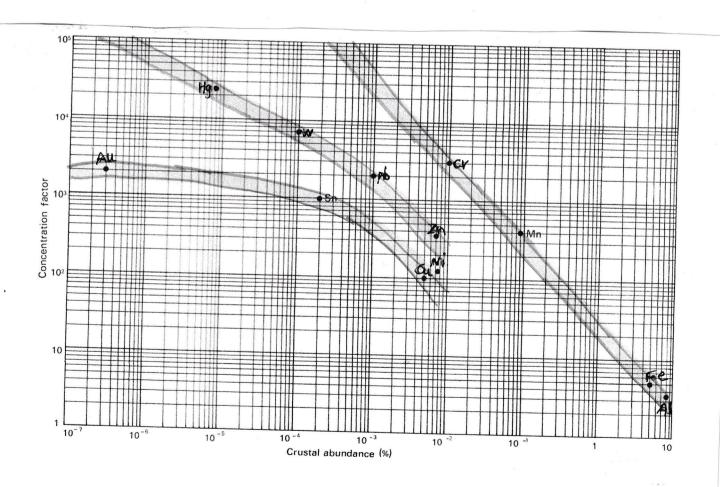

C.F. = average crustal abundance average exploitable grade

- (3) Using the given Log-Log paper, plot the relationship between concentration factor (Y-axis) and the average crustal abundance (x-axis).
- (4) What is the kind of this relationship (correlation)? Is it an inverse or direct correlation? Explain in detail.
- (5) Are there any deviations from this general correlation? Give examples.

<u>Concentration Factor:</u> The number of times a metal has to be concentrated above its average crustal abundance to reach its cut-off grade.

<u>Ore Grade</u>: The percentage of concentration of the metal in its ore. It can be wt% or ppm.

<u>Cut-off Grade:</u> The lowest grade limit of the ore that can be economically exploited, and below this limit, the ore becomes less economic.



Solutions

(1) & (2)

Element	Classification	C.F.
Al	Α	3.8
Fe	Α	5
Cu	S	1x10 ²
Ni	S	1.4x10 ²
Zn	S	$3.6x10^2$
Mn	Α	$3.9x10^2$
Sn	S	1x10 ³
Cr	Α	3x10 ³
Pb	S	2x10 ³
Au	S	2x10 ³
W	S	7x10 ³
Hg	S	2.5x10 ⁴

(3) The plot

- (4) * There is a general inverse correlation (the less abundant the element is the higher is its C.F.).
 - $**$ There are three separate correlations within the general trend, involving:
 - (i) Al, Fe, Mn and Cr (abundant-element group)
 - (ii) Zn, Pb, W and Hg (scarce-element group)
 - (iii) Ni, Cu, Sn, and Au (very scarce element group)
- (5) Yes there are, for examples:
- 1- Hg& AU
- 2- Cr &Ni

The reasons are factors lowering the cut-off grade including: price of element, properties of element, demand, technology etc.