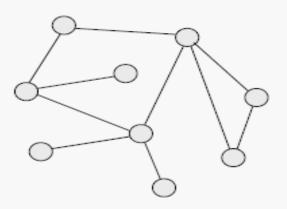
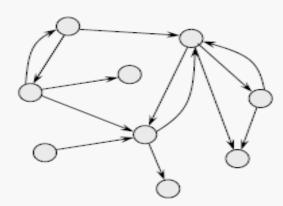
كليـة علوم الحاسـوب والرياضيات College of Computer Science & Mathematics

Software Engineering Dept.- Second year

Graph Data Structure

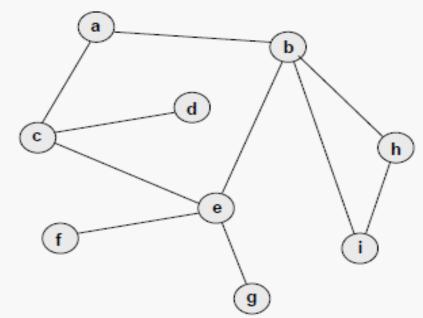

by

Dr.laheeb M. Ibrahim


Graph Data Structure

A graph G consists of a set V of <u>vertices</u> and a set E of pairs of distinct vertices from V. These pairs of vertices are called <u>edges</u>.

If the pairs of vertices are unordered, G is an <u>undirected</u> graph. If the pairs of vertices are ordered, G is a <u>directed</u> graph or <u>digraph</u>.


An undirected graph.

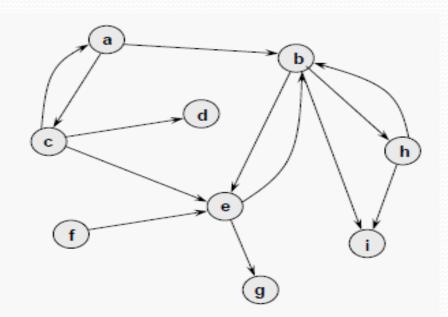
A directed graph.

An undirected graph G, where:

e = {c, d} is an edge, incident upon the vertices c and d

Two vertices, x and y, are adjacent if {x, y} is an edge (in E).

A path in G is a sequence of distinct vertices, each adjacent to the next.


A path is simple if no vertex occurs twice in the path.

Directed Graph Terminology

The terminology for directed graphs is only slightly different...

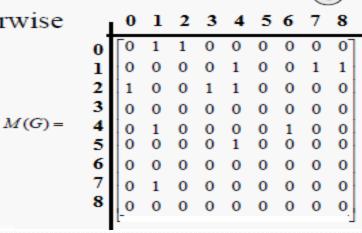
e = (c, d) is an edge, from c to d

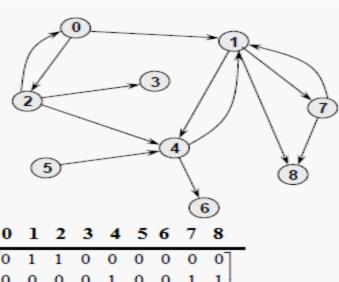
A <u>directed path</u> in a directed graph G is a sequence of distinct vertices, such that there is an edge from each vertex in the sequence to the next.

A directed graph G is <u>weakly connected</u> if, the undirected graph obtained by suppressing the directions on the edges of G is connected (according to the previous definition).

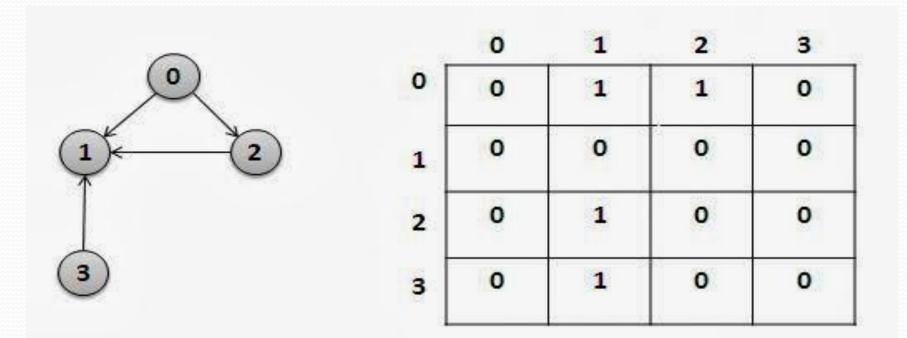
A directed graph G is <u>strongly connected</u> if, given any two vertices x and y in G, there is a directed path in G from x to y.

Represent Graph data structure

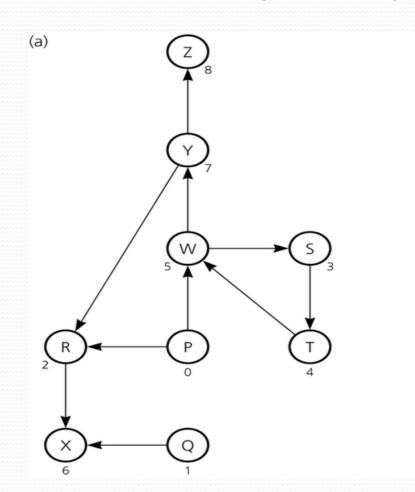

- 1- Adjacency Matrix Representation
- 2- Adjacency Table Representation
- 3- Adjacency List Representation


Adjacency Matrix Representation

A graph may be represented by a twodimensional <u>adjacency matrix</u>:


If G has n = |V| vertices, let M be an n by n matrix whose entries are defined by

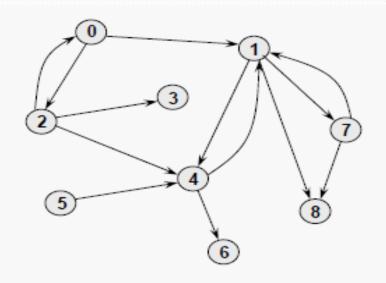
$$m_{ij} = \begin{cases} 1 & \text{if (i, j) is an edge} \\ 0 & \text{otherwise} \end{cases}$$



Example For Adjacency Matrix Representation

Adjacency Matrix Representation of Directed Graph

Example For Adjacency Matrix Representation



(b)		0	1	2	3	4	5	6	7	8
		Р	Q	R	S	Т	W	X	Υ	Z
0	Р	0	0	1	0	0	1	0	0	0
1	Q	0	0	0	0	0	0	1	0	0
2	R	0	0	0	0	0	0	1	0	0
3	S	0	0	0	0	1	0	0	0	0
4	Т	0	0	0	0	0	1	0	0	0
5	W	0	0	0	1	0	0	0	1	0
6	Х	0	0	0	0	0	0	0	0	0
7	Υ	0	0	1	0	0	0	0	0	1
8	Z	0	0	0	0	0	0	0	0	0

Adjacency Table Representation

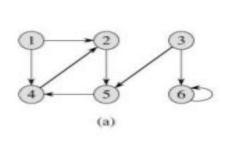
A slightly different approach is to represent only the adjacent nodes in the structure:

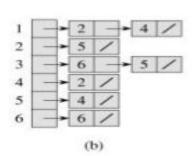
0	1	1	2	
1	1	4	7	8
2	1	0	3	4
3	1			
4	I	1	6	
5	I	4		
6	1			
7	1	1	8	
8	ī			

Adjacency List Representation

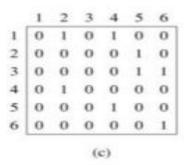
The adjacency list structure is simply a linked version of the adjacency table: 0 1 2 3 4 5

Array of linked lists, where list nodes store node labels for neighbors.


Example for Adjacency List Representation


Adjacency List Representation of Graph

Example for Adjacency List Representation


Graph representation - directed

graph

Adjacency list

Adjacency matrix

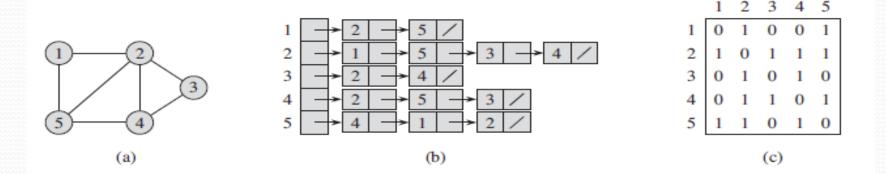


Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

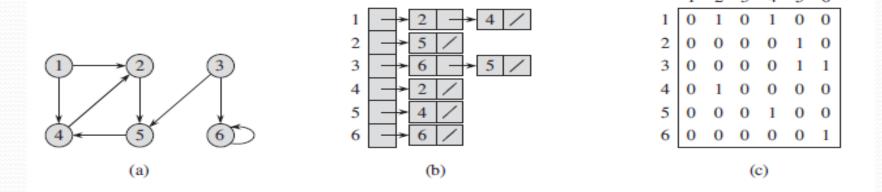


Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.