
1

Lecture – 11-

The for loop

 A for loop is a repetition control structure that allows you to
efficiently write a loop that executes a specific number of times.

Syntax:

for (init; condition; increment) {
statement(s);

}

 The init step is executed first and does not repeat.

 Next, the condition is evaluated, and the body of the loop is
executed if the condition is true.

 In the next step, the increment statement updates the loop
control variable.

 Then, the loop's body repeats itself, only stopping when the
condition becomes false.

 Example:

x = 1; x < 10; x++) { int(for
// some code

}

 The init and increment statements may be left out, if not needed,
but remember that the semicolons are mandatory.

 The example below uses a for loop to print numbers from 0 to 9.

for (int a = 0; a < 10; a++) {
cout << a << endl;

}

/* Outputs
0
1
2
3
4
5

2

6
7
8
9

*/

 In the init step, we declared a variable a and set it to equal 0.
a < 10 is the condition.

 After each iteration, the a++ increment statement is executed.

 When a increments to 10, the condition evaluates to false, and
the loop stops.

 It's possible to change the increment statement.
for (int a = 0; a < 50; a+=10) {

cout << a << endl;
}

/* Outputs
0

10
20
30
40
*/

 You can also use decrement in the statement.

for (int a = 10; a >= 0; a -= 3) {
cout << a << endl;

}

/* Outputs
10

7
4
1

*/

 When using the for loop, don't forget the semicolon after
the init and condition statements.

3

The do...while Loop

 Unlike for and while loops, which test the loop condition at the
top of the loop, the do...while loop checks its condition at the
bottom of the loop.

 A do...while loop is like a while loop. The one difference is that
the do...while loop is guaranteed to execute at least one time.

Syntax:

do {
statement(s);

} while (condition);

 Example:
int a = 0;

do {
cout << a << endl;

a++;
} while(a < 5);

/* Outputs

0
1
2
3
4

*/

 Don't forget the semicolon after the while statement.

while vs. do...while

 If the condition evaluated to false, the statements in the do would
still run once:

int a = 42;
do {

cout << a << endl;
a++;

} while(a < 5);

// Outputs 42

4

 The do...while loop executes the statements at least once, and
then tests the condition.

 The while loop executes the statement after testing condition.

The do...while Loop

 As with other loops, if the condition in the loop never evaluates
to false, the loop will run forever.

 Example:
int a = 42;

do {
cout << a << endl;

} while (a > 0);

 This will print 42 to the screen forever.

 Always test your loops, so you know that they operate in the
manner you expect.

