Lecture —12 —

Multiple Conditions
e Sometimes there is a need to test a variable for equality
against multiple values.
e That can be achieved using multiple if statements.
e Example:
int age = 42;
if (age == 16) {
cout <<"Too young";
}
if (age ==42) {
cout << "Adult";
}
if (age == 70) {
cout << "Senior";
}
e The switch statement is a more elegant solution in this
scenario.

The switch Statement
e The switch statement tests a variable against a list of values,
which are called cases, to determine whether it is equal to any
of them.

switch (expression) {

case valuel:

statement(s);

break:

case value2:

statement(s);

break;

case valueN:
statement(s);
break;

}

Switch evaluates the expression to determine whether it's equal to
the value in the case statement.



¢ |f a match is found, it executes the statements in that case.
e A switch can contain any number of case statements, which
are followed by the value in question and a colon.
e Here is the previous example written using a
single switch statement:

int age = 42;
switch (age) {
case 16:

cout << "Too young";
break;

case 42:

cout << "Adult";
break;

case 70:

cout << "Senior";
break;

}

¢ The code above is equivalent to three if statements.
e Notice the keyword break; that follows each case. That will be
covered shortly.

The default Case
¢ |n a switch statement, the optional default case can be used
to perform a task when none of the cases is determined to be
true.
e Example:

int age = 25;

switch (age) {

case 16:

cout << "Too young";
break;

case 42:

cout << "Adult";
break;

case 70:

2



cout << "Senior";

break;

default:

cout << "This is the default case";

}

// Outputs "This is the default case"
e The default statement's code executes when none of the
cases matches the switch expression.
e The default case must appear at the end of the switch.

The break Statement

e The break statement's role is to terminate the switch
statement.
¢ |ninstances in which the variable is equal to a case, the
statements that come after the case continue to execute until
they encounter a break statement.
¢ In other words, leaving out a break statement results in the
execution of all of the statements in the following cases, even
those that don't match the expression.
e Example:
int age = 42;
switch (age) {
case 16:
cout << "Too young" << endl;
case 42:
cout << "Adult" << end];
case 70:
cout << "Senior" << endl;
default:
cout <<"This is the default case" << endl;
}
[* Outputs
Adult
Senior
This is the default case
*/



As you can see, the program executed the matching case
statement, printing "Adult" to the screen.

With no specified break statement, the statements continued
to run after the matching case.

Thus, all the other case statements printed.

This type of behavior is called fall-through.

As the switch statement's final case, the default case requires
no break statement.

The break statement can also be used to break out of a loop.



