
1

Lecture-14-

Functions

 A function is a group of statements that perform a particular task.

 You may define your own functions in C++.

 Using functions can have many advantages, including the following:
o You can reuse the code within a function.
o You can easily test individual functions.
o If it's necessary to make any code modifications, you can make
modifications within a single function, without altering the program
structure.
o You can use the same function for different inputs.

 Every valid C++ program has at least one function -
the main() function.

The Return Type

 The main function takes the following general form:
main() int
{

// some code
return 0;

}

 A function's return type is declared before its name.

 In the example above, the return type is int, which indicates that the
function returns an integer value.

 Occasionally, a function will perform the desired operations without
returning a value.

 Such functions are defined with the keyword void.

 void is a basic data type that defines a valueless state.

Defining a Function

 Define a C++ function using the following syntax:
return_type function_name(parameter list)

{
body of the function

}

 return-type: Data type of the value returned by the function.

 function name: Name of the function.

2

 parameters: When a function is invoked, you pass a value to the
parameter. This value is referred to as actual parameter or argument.
The parameter list refers to the type, order, and number of the
parameters of a function.

 body of the function: A collection of statements defining what the
function does.

 Parameters are optional; that is, you can have a function with no
parameters.

 As an example, let's define a function that does not return a value,
and just prints a line of text to the screen.

void printSomething()

{
cout << "Hi there!";

}

 Our function, entitled printSomething, returns void, and has no
parameters.

 Now, we can use our function in main().

int main()
{

printSomething();
return 0;

}

 To call a function, you simply need to pass the required parameters
along with the function name.

Functions

 You must declare a function prior to calling it.

 Example:

#include <iostream>
using namespace std;
void printSomething() {

cout << "Hi there!";
}

3

int main() {
printSomething();

return 0;
}

 Putting the declaration after the main() function results in an error.

 A function declaration, or function prototype, tells the compiler
about a function name and how to call the function.

 The actual body of the function can be defined separately.

 Example:
#include <iostream>

using namespace std;

//Function declaration
void printSomething();

int main() {

printSomething();

return 0;
}

//Function definition
void printSomething() {

cout << "Hi there!";
}

 Function declaration is required when you define a function in one
source file and you call that function in another file.

 In such case, you should declare the function at the top of the file
calling the function.

Function Parameters

 For a function to use arguments, it must declare
formal parameters, which are variables that accept the argument's
values.

 Argument: a piece of data that is passed into a function or a
program.

4

 Example:

) x intprintSomething(void
{
<< x; cout
}

 This defines a function that takes one integer parameter and prints
its value.

 Formal parameters behave within the function similarly to other
local variables.

 They are created upon entering the function and are destroyed
upon exiting the function.

 Once parameters have been defined, you can pass the
corresponding arguments when the function is called.

 Example:

#include <iostream>
using namespace std;

void printSomething(int x) {

cout << x;
}

int main() {

printSomething(42);
}

// Outputs 42

 The value 42 is passed to the function as an argument and is
assigned to the formal parameter of the function: x.

 Making changes to the parameter within the function does not alter
the argument.

 You can pass different arguments to the same function.

 For example:
int timesTwo(int x) {

 return x*2;
 }

5

 The function defined above takes one integer parameter and
returns its value, multiplied by 2.

 We can now use that function with different arguments.
main() { int

<< timesTwo(8); cout
// Outputs 16

<<timesTwo(5); cout

// Outputs 10

<<timesTwo(42); cout
// Outputs 84

}

