
1

Lecture – 3 -

C++ is a middle-level programming language developed by Bjarne

Stroustrup starting in 1979 at Bell Labs. C++ runs on a variety of

platforms, such as Windows, Mac OS, and the various versions of

UNIX. This C++ course adopts a simple and practical approach to

describe the concepts of C++ for beginners.

Why to Learn C++

C++ is a MUST for students and working professionals to become
a great programmer. Some of the key advantages of learning C++
can be:

 C++ is very close to hardware, so you get a chance to work at
a low level which gives you lot of control in terms of memory
management, better performance and finally a robust
software development.

 C++ programming gives you a clear understanding about
Object Oriented Programming. You will understand low level
implementation of polymorphism when you will implement
virtual tables and virtual table pointers, or dynamic type
identification.

 C++ is one of the ever-green programming languages and
loved by millions of software developers. If you are a great
C++ programmer, then you will never sit without work and
more importantly you will get highly paid for your work.

 C++ is the most widely used programming languages in
application and system programming. So, you can choose
your area of interest of software development.

 C++ really teaches you the difference between compiler, linker
and loader, different data types, storage classes, variable
types their scopes, … etc.

2

Applications of C++ Programming

As mentioned before, C++ is one of the most widely used
programming languages. It has it's presence in almost every area
of software development. I'm going to list few of them here:

 Application Software Development - C++ programming has
been used in developing almost all the major Operating
Systems like Windows, Mac OSX and Linux. Apart from the
operating systems, the core part of many browsers like
Mozilla Firefox and Chrome have been written using C++.
C++ also has been used in developing the most popular
database system called MySQL.

 Programming Languages Development - C++ has been
used extensively in developing new programming languages
like C#, Java, JavaScript, Perl, UNIX’s C Shell, PHP and
Python, and Verilog etc.

 Computation Programming - C++ is the best friends of
scientists because of fast speed and computational
efficiencies.

 Games Development - C++ is extremely fast which allows
programmers to do procedural programming for CPU
intensive functions and provides greater control over
hardware, because of which it has been widely used in
development of gaming engines.

 Embedded System - C++ is being heavily used in developing
Medical and Engineering Applications like software
application for MRI machines, high-end CAD/CAM systems
etc.

Typical Programming (software development) Method

1. Determine the problem requirements

2. Analyze the problem to be solved

3. Design an algorithm or a flowchart to solve the problem

4. Implement the algorithm by writing your C++ code

5. Compile your program

3

. If there are compile errors, go back to 4 and debug

your code

6. Run your executable, test and verify

. If the program does not run as expected go back to 2,

3 or 4 as appropriate

7. Maintain and update

Problem Requirements

Specifying the problem requirements: state the problem clearly and
unambiguously and to gain a clear understanding of what is
required for its solution.

Analyzing the problem: involves identifying:

 all the inputs - the data you have to work with,

 all the outputs - the desired results,

 any additional requirements or constraints.

Design
An algorithm is generally a high level abstraction that is not actually
code. However, generally an algorithm expresses the ideas of a
program.

Designing the algorithm: develop the actual list of steps (the
algorithm) to solve the problem, and then to verify that the algorithm
solves the problem as intended.
 Usually the hardest step in the development process.
 Best not to try to solve every detail at the beginning - use top-

down design: list the major steps (subproblems) first then
solve each subproblem.

Most algorithms consist of at least the following subproblems:

1. Get the (input) data
2. Perform the computations
3. Display the results

4

Implementation, Testing, and Maintenance

 Implementing the algorithm: involves writing your algorithm
(pseudo-code) as a program in your chosen programming
language.

 Testing and verifying: requires thorough testing (on various
inputs) to verify that your program works as desired.

 Maintenance and updating: as things change over time (ie.
TAX increase) a program may need to be updated and
maintained

Some concepts used in programming:

Loops: to repeat a statement or group of statements for number of

times or as long as a certain condition is true.

Counters: to count things, usually counters need an initial value

(could be zero or one or any other value). Some examples: number

of students passed in an exam, number of positive integers in 100

random numbers, number of even numbers in 100 random

numbers.

Summations: to find the summation (sum) of series of numbers or

series of expressions. Some examples: summation of numbers 1-

100, summation of (x-1)
2
.

