
1

Lecture – 7-

Arithmetic Operators

 C++ supports these arithmetic operators.

 The addition operator adds its operands together.

 Example:
x = 40 + 60; int

<< x; cout

// Outputs 100

 Dividing by 0 will crash your program.

 The modulus operator (%) returns the remainder after an
integer division.

Operator Precedence

 Operator precedence determines the grouping of terms in an
expression, which affects how an expression is evaluated.

 Certain operators take higher precedence over others; for
example, the multiplication operator has higher precedence
over the addition operator.

 Example:
int x = 5+2*2;

cout << x;
// Outputs 9

 The program evaluates 2*2 first, and then adds the result to 5.

 As in mathematics, using parentheses alters operator
precedence.

2

int x = (5 + 2) *2;
cout << x;

// Outputs 14

 Parentheses force the operations to have higher precedence.

 If there are parenthetical expressions nested within one
another, the expression within the innermost parentheses is
evaluated first.

 If none of the expressions are in parentheses, multiplicative
(multiplication, division, modulus) operators will be evaluated
before additive (addition, subtraction) operators.

Assignment Operators

 The simple assignment operator (=) assigns the right side to
the left side.

 C++ provides shorthand operators that have the capability of
performing an operation and an assignment at the same time.

 Example:
x = 10; int

x += 4; // equivalent to x = x + 4
x -= 5; // equivalent to x = x – 5

 The same shorthand syntax applies to the multiplication,
division, and modulus operators.

x *= 3; // equivalent to x = x * 3
x /= 2; // equivalent to x = x / 2

x %= 4; // equivalent to x = x % 4

 The increment operator is used to increase an integer's value
by one and is a commonly used C++ operator.

x++; //equivalent to x = x + 1

 Example:
int x = 11;
x++;
cout << x;

//Outputs 12

3

 The increment operator has two forms, prefix and postfix.
++x; //prefix

x++; //postfix

 Prefix increments the value, and then proceeds with the
expression.

 Postfix evaluates the expression and then performs the
incrementing.

 Prefix example:
x = 5;

y = ++x;
// x is 6, y is 6

 Postfix example:
x = 5;

y = x++;
// x is 6, y is 5

 The prefix example increments the value of x, and then
assigns it to y.

 The postfix example assigns the value of x to y, and then
increments it.

