
1 
 

Lecture – 9-  
 

Conditionals and loops 
 
The if Statement 

 The if statement is used to execute some code if a condition is 
true. 
 

Syntax:  
if (condition) { 
//statements 
} 
 

 The condition specifies which expression is to be evaluated.  

 If the condition is true, the statements in the curly brackets are 
executed.  

 If the condition is false, the statements in the curly brackets 
are ignored, and the program continues to run after the if 
statements body. 

 Use relational operators to evaluate conditions. 

 Example: 
if (7 > 4) { 
cout << "Yes";  
} 
// Outputs "Yes"  

 

 The if statement evaluates the condition (7>4), finds it to 
be true, and then executes the cout statement. 

 If we change the greater operator to a less than operator 
(7<4), the statement will not execute. 

 Note: A condition specified in an if statement does not require 
a semicolon. 

 
 
 
 
 

 



2 
 

Relational operators: 

 
 

Example: 
if (10 == 10) { 
cout << "Yes"; 
} 
// Outputs "Yes" 

 

 The not equal to operator evaluates the operands, determines 
whether they are equal or not.  

 If the operands are not equal, the condition is evaluated 
to true. 
 

 Example: 
if (10 != 10) { 
cout << "Yes"; 
}  

 The above condition evaluates to false and the block of code 
is not executed. 

 You can use relational operators to compare variables in 
the if statement. 
 

 Example: 
int a = 55; 
int b = 33; 
if (a > b) { 
cout << "a is greater than b"; 
} 
 
// Outputs "a is greater than b" 

 
 
 
 



3 
 

The else Statement 

 An if statement can be followed by an optional else statement, 
which executes when the condition is false.  
 

Syntax: 
if (condition) { 
//statements 
} 
else { 
//statements 
} 

 The compiler will test the condition:  
o If it evaluates to true, then the code inside 

the if statement will be executed.  
o If it evaluates to false, then the code inside 

the else statement will be executed. 

 When only one statement is used inside the if/else, then the 
curly braces can be omitted. 

 Example: 
 
int mark = 90; 
if (mark < 50) { 
cout << "You failed." << endl; 
} 
else { 
cout << "You passed." << endl; 
} 
 
// Outputs "You passed." 

 

 In all previous examples only one statement was used inside 
the if/else statement, but you may include as many statements 
as you want. 

 
 
 
 
 



4 
 

Example: 
int mark = 90; 
if (mark < 50) { 
cout << "You failed." << endl; 
cout << "Sorry" << endl; 
} 
else { 
cout << "Congratulations!" << endl; 
cout << "You passed." << endl; 
cout << "You are awesome!" << endl; 
} 
/* Outputs 
Congratulations! 
You passed. 
You are awesome! 
*/ 

 
 
 
Nested if Statements 

 You can also include, or nest, if statements within another if 
statement. 

 Example: 
int mark = 100; 
if (mark >= 50) { 
cout << "You passed." << endl; 
if (mark == 100) { 
cout <<"Perfect!" << endl; 
} 
} 
else { 
cout << "You failed." << endl; 
} 
 
/*Outputs 
You passed. 
Perfect! 
*/ 

 



5 
 

 C++ provides the option of nesting an unlimited number of 
if/else statements. 

 
 
 
Example: 

int age = 18; 
if (age > 14) { 
if(age >= 18) { 
cout << "Adult"; 
} 
else { 
cout << "Teenager"; 
} 
} 
else { 
if (age > 0) { 
cout << "Child"; 
} 
else { 
cout << "Something's wrong"; 
} 
}  
 

 Remember that all else statements must have 
corresponding if statements. 

 In if/else statements, a single statement can be included 
without enclosing it into curly braces. 

 Example: 
int a = 10; 
if (a > 4) 
cout << "Yes"; 
else 
cout << "No";  

 


