Lecture — 9-
Conditionals and loops

The if Statement

e The if statement is used to execute some code if a condition is
true.

Syntax:
if (condition) {
/[statements

}

e The condition specifies which expression is to be evaluated.
¢ If the condition is true, the statements in the curly brackets are
executed.
¢ |f the condition is false, the statements in the curly brackets
are ignored, and the program continues to run after the if
statements body.
e Use relational operators to evaluate conditions.
e Example:
if (7>4){
cout << "Yes";

}
/[Outputs "Yes"

e The if statement evaluates the condition (7>4), finds it to
be true, and then executes the cout statement.

¢ If we change the greater operator to a less than operator
(7<4), the statement will not execute.

e Note: A condition specified in an if statement does not require
a semicolon.

Relational operators:

Operator Description
= Greater than or equal to 7>=4 True
<= Less than or equal to 7<=4 False
== Equal to 7==4 False
= Not equal to 7'=4 True
Example:
if (10 ==10) {
cout << "Yes";

/[Outputs "Yes"

e The not equal to operator evaluates the operands, determines
whether they are equal or not.

¢ |f the operands are not equal, the condition is evaluated

to true.
e Example:
if (10!=10) {
cout << "Yes";
}

e The above condition evaluates to false and the block of code
IS not executed.

e You can use relational operators to compare variables in
the if statement.

e Example:
int a = 55;
int b =33;
if (@a>Db){
cout << "a is greater than b";

}

/[Outputs "a is greater than b"

The else Statement
e An if statement can be followed by an optional else statement,
which executes when the condition is false.

Syntax:
if (condition) {
/[statements
}
else {
[[statements
}
e The compiler will test the condition:
o If it evaluates to true, then the code inside
the if statement will be executed.
o If it evaluates to false, then the code inside
the else statement will be executed.
e When only one statement is used inside the if/else, then the
curly braces can be omitted.
e Example:

int mark = 90;

if (mark < 50) {

cout << "You failed." << endl;

}

else {

cout << "You passed." << endl;

}
/[Outputs "You passed.”
¢ In all previous examples only one statement was used inside

the if/else statement, but you may include as many statements
as you want.

Example:
int mark = 90;
if (mark < 50) {
cout << "You failed." << endl;
cout << "Sorry" << endl;
}
else {
cout << "Congratulations!" << endl;
cout << "You passed." << endl;
cout << "You are awesome!" << endl;
}
[* Outputs
Congratulations!
You passed.
You are awesome!
*/

Nested if Statements
e You can also include, or nest, if statements within another if
statement.

e Example:
int mark = 100;
if (mark >=50) {
cout << "You passed." << end];
if (mark == 100) {
cout <<"Perfect!" << endl;
}
}

else {

cout << "You failed." << endl;
}

[*Outputs

You passed.

Perfect!
*/

e C++ provides the option of nesting an unlimited number of
if/else statements.

Example:
int age = 18;
if (age > 14) {
if(age >= 18) {
cout << "Adult";
}
else {
cout << "Teenager",

}
}

else {

if (age > 0) {

cout << "Child";

}

else {

cout << "Something's wrong";

}
}

e Remember that all else statements must have
corresponding if statements.
¢ In if/else statements, a single statement can be included
without enclosing it into curly braces.
e Example:
inta = 10;
if (a>4)
cout << "Yes";
else
cout << "No";

