الاعداد الحقيقية (Real Numbers) الاعداد الحقيقية

The **real numbers** R is a complete ordered field.

Theorem (1.1): For each positive integer n and each positive number a, the equation $x^n = a$ has a unique positive solution.

Theorem (1.2): The equation $x^2 = 2$ has no solution in Q.

Proof:

Let
$$y \in Q \implies y = \frac{a}{b}$$
, $a, b \in Z$, $b \neq 0$

Let
$$y^2 = 2 \implies \frac{a^2}{h^2} = 2$$

$$\Rightarrow a^2 = 2b^2 \text{ (since } b \neq 0 \Rightarrow a \neq 0)$$

We have three cases:

Case (1): a, b are odd numbers

 $\Rightarrow a^2, b^2$ are odd

but $a^2 = 2b^2$ and $2b^2$ is even $\Rightarrow a$ is even \Rightarrow C!

Case (2): a is odd and b is even, say b = 2d

$$\Rightarrow a^2 = 2b^2 \Rightarrow a^2 = 8d^2$$

Since $8d^2$ is even $\Rightarrow a$ is even \Rightarrow C!

Case (3): a is even and b is odd, say a = 2c

Since
$$a^2 = 2b^2 \implies 4c^2 = 2b^2$$

$$\Rightarrow b^2 = 2c^2 \Rightarrow b \text{ is even } \Rightarrow C!$$

 \therefore There is no rational number satisfy $x^2 = 2$.

Theorem (1.3): The rational numbers Q is not complete.

Proof:

Let
$$S = \{x \in Q : x^2 < 2\}$$

$$: 1 \in S \Rightarrow S \neq \emptyset$$

 $x < 2, \forall x \in S \Rightarrow S$ is bounded above

 $x^2 = 2$ has no root in Q

 \Rightarrow S has no l.u.b, thus Q is not complete.

Theorem (1.4): (Archimedean Property) خاصية أرخميدس

For every $a, b \in R$, a > 0, $\exists n \in N$ such that na > b.

Proof:

Let $X = \{ka: k \in N\} \subset R$, $X \neq \emptyset$

Suppose that the statement is not true

i.e. $\exists a,b \in R$, s.t. $\forall n \in N$, na < b

 \Rightarrow b is upper bound of X

 \Rightarrow X has l.u.b (by Completeness axiom)

Let y = l.u.b(X)

Since $a > 0 \implies y - a < y$

 \Rightarrow y - a is not upper bound for X

 $\Rightarrow \exists ma \in X \text{ s.t. } y - a < ma$

 $\Rightarrow y < ma + a$

 \Rightarrow y < a(m+1)

But $a(m+1) \in X \implies C!$

: The statement is true.

Corollary (1.1): Let $\varepsilon > 0$, then $\exists n \in \mathbb{N} \text{ s.t. } \frac{1}{n} < \varepsilon$.

Proof:

By using Archimedean property

Let $a = \varepsilon$ and b = 1

 $\Rightarrow \exists n \in N \text{ s.t. } n\varepsilon > 1$

 $\Rightarrow \frac{1}{n} < \varepsilon$

Corollary (1.2): Every interval in R of the form $(0,\varepsilon)$ contains infinitely many rational numbers.

Proof:

Let
$$\varepsilon > 0 \Rightarrow \exists n \in \mathbb{N}$$
 s.t. $\frac{1}{n} < \varepsilon$ (by Corollary (1.1))

Since
$$0 < \frac{1}{n} \in Q$$

 \therefore (0, ε) has infinitely many rational numbers

Theorem (1.5): The field R contains a subfield isomorphic to the field Q.

Theorem (1.6): (Density of Rational Numbers Q) كثافة الاعداد النسبية

Every interval in *R* contains infinitely many of rational numbers.

Proof:

First, we prove that $\forall a, b \in R, a < b$, $\exists r \in Q$ s.t. a < r < b

Case (1):
$$0 < a < b$$
 and $b - a > 1$

Let
$$S = \{n \in N : n > a\} \neq \emptyset$$

 $\exists r$ the smallest number in S (Since N is well ordered)

$$\Rightarrow r > a$$

We have r - 1 < r

If
$$r - 1 > a \implies r - 1 \in S$$

But r is smallest number in $S \Rightarrow C!$

Thus
$$r - 1 \le a$$

$$\Rightarrow r \leq a + 1$$

Since
$$b - a > 1 \implies b > a + 1$$

$$\Rightarrow r \le 1 + a < b$$

$$\Rightarrow r < b$$

Thus a < r < b

Since $r \in N \implies r \in Q$ and we done

Case (2): a < 0 < b

Since $0 \in Q$ then we done

Case (3): a < b < 0

$$\Rightarrow$$
 0 < -b < -a

By case (1)

$$\exists r \in Q$$
, s.t. $-b < r < -a \Rightarrow a < -r < b$

Second, to prove \exists infinitely rational numbers between a and b

By first step,

$$\exists r_1 \in Q, s.t. a < r_1 < b$$

Again,

$$\exists r_2 \in Q$$
, s.t. $a < r_2 < r_1$ and

$$\exists r_3 \in Q$$
, s.t. $a < r_3 < r_2$ and ... so on

 \therefore \exists infinitely rational numbers between $a,b, \forall a,b \in R$.

Theorem (1.7): (Density of Irrational Numbers Q') كثافة الاعداد غير النسبية

Every interval in R contains infinitely many irrational numbers.

Proof:

Let
$$I = [a,b] \subset R$$

By the previous theorem,

Let
$$r \in Q$$
 s.t. $\frac{a}{\sqrt{2}} < r < \frac{b}{\sqrt{2}}$

$$\Rightarrow a < r\sqrt{2} < b \Rightarrow r\sqrt{2} \in I$$

Clearly, $r\sqrt{2} \in Q'$ then we done

Now, to prove these numbers is infinite

Let
$$s_1 \in Q'$$
, s.t. $a < s_1 < b$

By the first step,

$$\exists s_2 \in Q'$$
, s.t. $a < s_2 < s_1$ and

$$\exists s_3 \in Q'$$
, s.t. $a < s_3 < s_2$ and ... so on.

 \therefore \exists infinitely rational numbers between $a,b, \forall a,b \in R$.

.....

Definition (1.10): (Dense Set)	المجموعة الكثيفا
A subset $S \subseteq R$ is dense in R if $S \cap I \neq \emptyset$, \forall interval $I \subset R$.	
Example (1.5): The rational numbers Q is dense in real numbers R .	