Chapter Two متتابعات الاعداد الحقيقية Sequences of Real Numbers

Definition (2.1): (Sequence) المتتابعة

Let $S \neq \emptyset$, every function $f_n: N \to S$ is called a sequence in S and we write it $a_n > \text{ or } \{a_n\}_n^{\infty} \text{ or } (a_n)$.

Example (2.1):

(1)
$$<\sqrt{n}>=<1,\sqrt{2},\sqrt{3},\sqrt{4},\sqrt{5},...>$$

(2)
$$<\frac{1}{n}>=<1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},...>$$

(3)
$$<(-1)^{n+1}\frac{1}{n}>=<1,-\frac{1}{2},\frac{1}{3},-\frac{1}{4},\frac{1}{5}, ...>$$



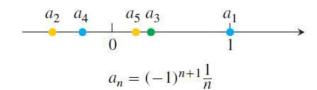


Figure (2.1). Sequences can be represented as points on the real line

المتتابعة المتقاربة (Convergent Sequence) المتتابعة المتقاربة

The sequence $\langle a_n \rangle$ converges to a_0 if

 $\forall \ \varepsilon > 0$, \exists positive integer $k = k(\varepsilon)$ s. t. $|a_n - a_0| < \varepsilon$, $\forall \ n > k$.

i.e.
$$\lim_{n\to\infty} a_n = a_0$$
 or $a_n \to a_0$

If no such number a_0 exists, we say that $\langle a_n \rangle$ diverges

Example (2.2):

(1)
$$<\sqrt{n}> = <1, \sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, ...>$$
 diverge

(2)
$$<\frac{1}{n}> = <1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots > \to 0$$
 as $n \to \infty$

(3)
$$<(-1)^{n+1}\frac{1}{n}> = <1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots > \to 0$$
 as $n \to \infty$

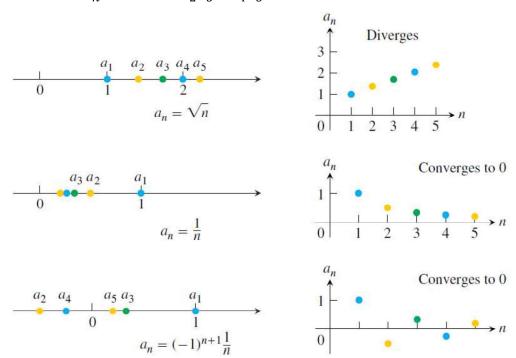


Figure (2.2). Sequences can be represented as points on the real line or as points in the plane

Theorem (2.1): The convergent point of a sequence is unique.

Proof: Let $\langle a_n \rangle$ be a sequence and

$$a_n \to a_0$$
 and $a_n \to b_0$ s.t. $a_0 \neq b_0$

Let
$$|a_0 - b_0| < d$$
, $d > 0$

$$\because < a_n > \to a_0 \implies \exists$$
 positive integer k_1 , s.t. $|a_n - a_0| < \frac{d}{2}$, $\forall n > k_1$
Similarly,

$$\because < a_n > \to b_0 \implies \exists$$
 positive integer k_2 , s.t. $|a_n - b_0| < \frac{d}{2}$, $\forall n > k_2$
Now, let $k = max\{k_1, k_2\}$

So,

$$d = |a_0 - b_0| = |a_0 - a_k + a_k - b_0|$$

$$\leq |a_0 - a_k| + |a_k - b_0|$$

$$< \frac{d}{2} + \frac{d}{2} = d \implies C!$$

$$\therefore a_0 = b_0$$

⇒ The convergent point is unique

المتتابعة المقيدة (Bounded Sequence) المتتابعة المقيدة

A sequence $\langle a_n \rangle$ is said to be **bounded** iff $\exists M \in R \text{ s.t. } |a_n| \leq M, \forall n$.

Example (2.3):

$$(1) < \frac{n+2}{2n-1} > = <3, \frac{4}{3}, 1, \frac{6}{7}, \dots >$$
 is bounded by 3

$$(2) < (-1)^{n+1} > = < 1, -1, 1, -1, ... >$$
 is bounded by 1

$$(3) < \frac{2}{n^2} > = <2, \frac{1}{2}, \frac{2}{9}, \frac{1}{8}, \dots > \text{ is bounded by } 2$$

.....

Definition (2.4): (Monotonic Sequence) المتتابعة الرتيبة

The sequence $< a_n >$ is said to be **monotonic sequence** if $a_n \le a_{n+1}$, $\forall n$ or $a_n \ge a_{n+1}$, $\forall n$.

Example (2.4):

(1)
$$<\frac{n+1}{n^2}>=<2,\frac{3}{4},\frac{4}{9},\frac{5}{16},...>$$
 monotonic sequence (decreasing seq.)

(2)
$$<\frac{2^{n}-1}{2^{n}}>=<\frac{1}{2},\frac{3}{4},\frac{7}{8},\frac{15}{16},...>$$
 monotonic sequence (increasing seq.)

Theorem (2.2): Every bounded monotone sequence is convergent.

Proof: Let $\langle a_n \rangle$ be a bounded monotone sequence

Case (1):

$$a_n \le a_{n+1}, \ \ \forall \ n \ \ \text{and} \ \ |a_n| < M \ , \ \forall \ n$$

Let
$$S = \{a_n : n \in N\}$$