$|a_n| < M$, $\forall n \Rightarrow S$ is bounded above

 \Rightarrow S has l.u.b (By Completeness axiom)

Let b = l.u.b(S) and for $\varepsilon > 0$, we have $b - \frac{\varepsilon}{2} < b$

Hence $b - \frac{\varepsilon}{2}$ not upper bound

 \therefore $\exists a_k$ s.t. $a_k > b - \frac{\varepsilon}{2}$ and $< a_n >$ is increasing then

 $a_n \ge a_k$, $\forall n > k$

$$\Rightarrow b - \frac{\varepsilon}{2} < a_n, \ \forall n > k$$

$$\Rightarrow |a_n - b| < \frac{\varepsilon}{2}, \ \forall \ n > k$$

$$\Rightarrow a_n \rightarrow b$$

 $\therefore < a_n >$ is convergent

<u>Case (2)</u>:

 $a_n \ge a_{n+1}$, $\forall n$ and $|a_n| < M$, $\forall n$

The proof is similar to case (1).

Example (2.5): Monotone sequence which is not convergent.

The sequence < 1, 2, 3, ... > is

- (1) Monotone
- (2) Bounded below, not bounded above
- (3) Not convergent

Example (2.6): The sequence < 1, 1.4, 1.41, ... > in Q is

- (1) Bounded by 2
- (2) Convergent to $\sqrt{2}$

Thus $\sqrt{2} \notin Q$ then the sequence is not convergent in Q.

Example (2.7): Sequence bounded not monotone.

The sequence $< (-1)^n > is$

- (1) Bounded by 1
- (2) Not monotone
- (3) Not convergent

متتابعة كوشى (Cauchy Sequence) متتابعة كوشى

A sequence $< a_n >$ of real numbers is called a Cauchy sequence if for every $\forall \ \varepsilon > 0, \exists \ a \ positive \ integer \ k \ s.t. \ |a_m - a_n| < \varepsilon \ , \forall \ m,n > k.$

Theorem (2.3): Every convergent sequence is Cauchy sequence.

Proof:

Let $\langle a_n \rangle$ be convergent sequence and let $a_n \to a_0$

Let $\varepsilon > 0$ since $a_n \to a_0$ then $\exists \ k \in \mathbb{N}$ s.t. $|a_n - a_0| < \frac{\varepsilon}{2}$, $\forall \ n > k$

Now, $\forall n, m \in \mathbb{N}$, n, m > k

$$|a_n - a_m| = |a_n - a_0 + a_0 - a_m|$$

$$\leq |a_n - a_0| + |a_m - a_0|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow |a_n - a_m| < \varepsilon, \forall n, m > k$$

 \therefore < a_n > is Cauchy sequence

Theorem (2.4): Every Cauchy sequence is bounded.

Proof: Let $\langle a_n \rangle$ be a Cauchy sequence

Let
$$\varepsilon = 1$$

$$\therefore \ \exists \ k \in \mathbb{N}, \ \text{s.t.} \ |a_n - a_{n+1}| < 1 \,, \ \forall \ n > k$$

$$\therefore |a_n| < |a_{n+1}| + 1, \ \forall \ n$$

Let
$$M = max\{|a_1|, |a_2|, ..., |a_n|, |a_{n+1}| + 1\}$$

$$\therefore \ |a_n| \leq M \ , \ \forall \, n \in N$$

$$\therefore$$
 $|a_n|$ is bounded

Example (2.8): Not Cauchy sequence but bounded.

The sequence $< (-1)^n >$ is bounded by 1

But $< (-1)^n >$ is not Cauchy

Let
$$\varepsilon = \frac{1}{2}$$
, let $k \in \mathbb{N}$

$$|a_n - a_{n+1}| = |(-1)^n - (-1)^{n+1}| = |2| = 2 > \frac{1}{2}$$

 \therefore < $(-1)^n$ > not Cauchy sequence.

المتتابعة المعشعشة (Nested Sequence)

Let $< I_n >$ be a sequence of intervals $< I_n >$ is called **nested sequence** if $I_{n+1} \subseteq I_n$, $\forall n$.

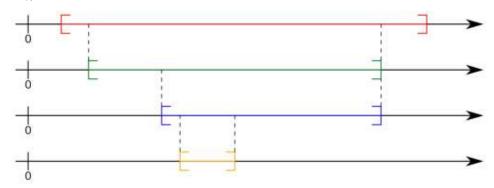


Figure (2.3). A sequence of nested intervals

Example (2.9):

 $\langle I_n \rangle = \langle \left[0, \frac{1}{n}\right] \rangle$ is nested sequence

Theorem (2.5): (Nested Intervals Theorem) نظرية الفترات المعشعشة

Let $< I_n >$ be a nested sequence of closed intervals in R such that $|I_n| \to 0$. Then $\bigcap_n I_n \neq \emptyset$ and $\bigcap_n I_n$ contains only one element.

Proof:

Let
$$I_n = [a_n, b_n]$$

Let
$$S_1 = \{a_1, a_2, ...\}$$
 and $S_2 = \{b_1, b_2, ...\}$

Now,
$$a_n < b_n$$
, $\forall n$

 $a_m \ge a_n$ and $b_m \le b_n$, $\forall m \ge n$

$$\Rightarrow a_n \le a_m < b_m \le b_n$$

$$\Rightarrow a_m < b_n, \forall m \geq n$$

 \therefore every element in S_2 is upper bound for S_1

 \Rightarrow S₁ has l.u.b (By the completeness axiom)

Let
$$y = l.u.b(S_1)$$

Since $a_n \le y$, and $y \le b_n$, $\forall n$

$$\Rightarrow a_n \leq y \leq b_n \ , \ \forall \ n$$

$$\Rightarrow y \in I_n , \forall n$$

$$\therefore y \in \bigcap_{n} I_{n} \Rightarrow \bigcap_{n} I_{n} \neq \emptyset$$

Assume $y_1, y_2 \in \bigcap_n I_n, y_1 \neq y_2$

Since
$$|I_n| \to 0 \Rightarrow |\bigcap_n I_n| \to 0$$

$$\Rightarrow |y_1 - y_2| = 0 \Rightarrow y_1 = y_2$$

 $\therefore \bigcap_{n} I_n$ contains only one element

Example (2.9): $< I_n > = < \left[0, \frac{1}{n}\right] >$

(1) $I_{n+1} \subseteq I_n$ nested intervals

$$(2) \ |I_n| = \left|\frac{1}{n}\right| \to 0$$

$$(3) \bigcap_{n} I_n = \{0\}$$

Theorem (2.6): Every Cauchy sequence in *R* is convergent.

Theorem (2.7): If F is an ordered field in which every Cauchy sequence is convergent, then F is complete.
