$$\Rightarrow 2c - 6 = \frac{-1 - 11}{1 - (-1)} \Rightarrow c = 0$$

Corollary (1.2): Let f be a differentiable function on (a, b) such that f'(x) = 0 for all $x \in (a, b)$. Then f is a constant function on (a, b).

Corollary (1.3):Let f and g be differentiable functions on (a, b) such that f' = g' on (a, b). Then there exists a constant c such that f(x) = g(x) + c, $\forall x \in (a, b)$.

Definition (1.2): Let f be a real-valued function defined on an interval I. We say

- (1) f is **increasing** on I, if $x, y \in I$ and x < y imply $f(x) \le f(y)$,
- (2) f is strictly increasing on I, if $x, y \in I$ and x < y imply f(x) < f(y),
- (3) f is **decreasing** on I, if $x, y \in I$ and x < y imply $f(x) \ge f(y)$,
- (4) f is strictly decreasing on I, if $x, y \in I$ and x < y imply f(x) > f(y).

Example (1.9): The functions e^x on R and \sqrt{x} on $[0, \infty)$ are <u>strictly increasing</u>. The function cos(x) is strictly decreasing on $[0, \pi]$.



Corollary (1.4): Let f be a differentiable function on (a, b). Then

- (1) f is increasing if $f'(x) \ge 0$ for all $x \in (a, b)$;
- (2) f is strictly increasing if f'(x) > 0 for all $x \in (a, b)$;
- (3) f is **decreasing** if $f'(x) \le 0$ for all $x \in (a, b)$;
- (4) f is strictly decreasing if f'(x) < 0 for all $x \in (a, b)$.

Corollary (1.5): Suppose that $f:[a,b] \to R$ is a continuous function that is differentiable on (a,b). If $f'(x) \neq 0$, for any $x \in (a,b)$, then f is <u>injective</u>.

Theorem (1.7): (Intermediate Value Theorem for Derivatives)

Let f be a differentiable function on (a, b). If a < x < y < b, and if f'(x) < c < f'(y), there exists $k \in (x, y)$ such that f'(k) = c.

Applications of Differentiation

Theorem (1.8): (L'Hôpital's Rule)

Let f and g be differentiable on a neighborhood of the point c, at which f(c) = g(c) = 0 or $\pm \infty$. Then

$$\lim_{x \to c} \frac{f(x)}{g(x)}$$
 exists and equals $\lim_{x \to c} \frac{f'(x)}{g'(x)}$,

provided that this last limit exists.

Example (1.10): Prove that $\lim_{x \to \frac{\pi}{2}} \frac{\cos(3x)}{\sin(x) - e^{\cos(x)}}$ exists and determine its value.

Solution:

Let
$$f(x) = cos(3x)$$
 and $g(x) = sin(x) - e^{cos(x)}$, for $x \in R$

Then f and g are differentiable on R, and

$$f\left(\frac{\pi}{2}\right) = g\left(\frac{\pi}{2}\right) = 0;$$

Now,

$$\lim_{x \to \frac{\pi}{2}} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{\pi}{2}} \frac{-3\sin(3x)}{\cos(x) + \sin(x) \cdot e^{\cos(x)}} = \frac{3}{0 + 1(1)} = 3$$

It follows from L'Hôpital's Rule that the limit of $\frac{\cos(3x)}{\sin(x) - e^{\cos(x)}}$ exist and that its value is 3.

Example (1.11): Prove that $\lim_{x\to 0} \frac{x^2}{\cosh(x)-1}$ exists and determine its value.

Solution:

Let
$$f(x) = x^2$$
 and $g(x) = cosh(x) - 1$, for $x \in R$

Then f and g are differentiable on R, and

$$f(0) = g(0) = 0;$$

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{2x}{\sinh(x)}$$

We have f'(0) = g'(0) = 0;

Now,

$$\lim_{x \to 0} \frac{f''(x)}{g''(x)} = \lim_{x \to 0} \frac{2}{\cosh(x)} = \frac{2}{1} = 2$$

It follows from L'Hôpital's Rule that the limit of $\frac{x^2}{\cosh(x)-1}$ exist and that its value is 2

Exercises (1.2): (Homework)

- (1) Determine whether the conclusion of the Mean Value Theorem holds for the following functions on the specified intervals.
 - (a) x^2 on [-1, 2],
 - (b) $\sin x$ on $[0, \pi]$,
 - (c) |x| on [-1, 2],
 - $(d)^{\frac{1}{x}}$ on [-1, 1],

- (e) $\frac{1}{x}$ on [1, 3],
- (2) Suppose f is differentiable on R and f(0) = 0, f(1) = 1 and f(2) = 1.
 - (a) Show $f'(x) = \frac{1}{2}$ for some $x \in (0, 2)$.
 - (b) Show $f'(x) = \frac{1}{7}$ for some $x \in (1, 2)$.
- (3) Let f be defined on R, and suppose $|f(x) f(y)| \le (x y)^2$ for all $x, y \in R$. Prove f is a constant function.
- (4) Show $\sin x \le x$ for all $x \ge 0$. Hint: Show $f(x) = x \sin x$ is increasing on $[0, \infty)$.

Definition (1.3): (Taylor Polynomial) متعددة حدود تايلر

Let f be n-times differentiable on an open interval containing the point a. Then the **Taylor polynomial** of degree n for f at a is the polynomial

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Example (1.12): Determine the Taylor polynomials $T_1(x)$, $T_2(x)$ and $T_3(x)$ for the function $f(x) = \sin x$ at each of the following points:

(*i*)
$$a = 0$$
;

(*ii*)
$$a = \frac{\pi}{2}$$
.

Solution:

$$f(x) = \sin x,$$
 $f(0) = 0,$ $f(\frac{\pi}{2}) = 1;$

$$f'(x) = \cos x,$$
 $f'(0) = 1,$ $f'(\frac{\pi}{2}) = 0;$

$$f''(x) = -\sin x,$$
 $f''(0) = 0,$ $f''(\frac{\pi}{2}) = -1;$

$$f'''(x) = -\cos x,$$
 $f'''(0) = -1,$ $f'''(\frac{\pi}{2}) = 0.$