Exercises (2.1): (Homework)

- (1) For each of the following sequences, write a formula for the n^{th} term and determine the limit (if it exists).
 - $(a)\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{8},\dots$
 - (b) $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, ...
 - (*c*) 0.9, 0.99, 0.999, ...
 - $(d) \sin \frac{\pi}{2}, \sin \pi, \sin \frac{3\pi}{2}, \sin 2\pi, \sin \frac{5\pi}{2}, \dots$
- (2) Determine whether the sequence converges or diverges. If it converges, find the limit.
 - $(a) < \frac{1}{2}(1 + (-1)^{n+1}) >$
 - $(b) < \ln \frac{n+1}{n} >$
 - $(c) < \frac{2^n}{3^{n+1}} >$
 - $(d) < \left(1 + \frac{2}{n}\right)^{\frac{1}{n}} >$

Chapter Three

متسلسلات الأعداد الحقيقية

Series of Real Numbers

المتسلسلة غير المنتهية (Infinite Series) غير المنتهية

The **infinite series** of real numbers $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, let S_n denote the nth partial sum:

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

If the sequence $\langle S_n \rangle$ is **convergent**, i.e. $\lim_{n \to \infty} S_n = S$, then the series $\sum_{n=1}^{\infty} a_n$ is convergent and we write $\sum_{n=1}^{\infty} a_n = S$.

The number S is the **sum** of the series. Otherwise, the series is called **divergent**.

المتسلسلة الهندسية (Geometric Series) المتسلسلة الهندسية

The series $\sum_{n=1}^{\infty} a \, r^{n-1} = a + ar + ar^2 + \cdots$ is called **geometric series** is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r}$$
, $|r| < 1$

If $|r| \ge 1$, the geometric series is divergent.

Example (3.1): Find the sum of the series

$$\sum_{n=1}^{\infty} 5 \left(-\frac{2}{3} \right)^{n-1} = 5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

Since $|r| = \frac{2}{3} < 1 \implies$ convergent

$$\Rightarrow \sum_{n=1}^{\infty} 5 \left(-\frac{2}{3} \right)^{n-1} = \frac{5}{1 - \left(-\frac{2}{3} \right)} = 3$$

المتسلسلة التوافقية (Harmonic Series) المتسلسلة التوافقية

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is called **harmonic series** and its divergent.

Theorem (3.1): If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.

Proof: Let
$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

$$\Rightarrow a_n = S_n - S_{n-1}$$

Since $\sum_{n=1}^{\infty} a_n$ convergent

$$\Rightarrow \langle S_n \rangle$$
 is convergent

$$\Rightarrow \lim_{n\to\infty} S_n = S$$
 and $\lim_{n\to\infty} S_{n-1} = S$

$$\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1})$$

$$= \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1}$$

$$= S - S = 0$$

Remark (3.1): The converse of the above theorem is not true as the following example.

Example (3.2): Note that $\frac{1}{n} \to 0$ as $n \to \infty$, but $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.

Note (3.1): If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Example (3.3): Show that the series $\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$

Solution:
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{5n^2 + 4} = \lim_{n \to \infty} \frac{1}{5 + 4/n^2} = \frac{1}{5} \neq 0$$

So the series diverges.

Theorem (3.2): If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series, then

(i)
$$\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n$$

(ii)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(ii)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

Definition (3.4): (p - Series)

The p -series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$.

Example (3.4):

- (1) The series $\sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \cdots$ is convergent because it is a p-series with p=3>1
- (2) The series $\sum_{n=1}^{\infty} \frac{1}{n^{1/3}} = \frac{1}{\sqrt[3]{1}} + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}}$... is divergent because it is a p-series with $p = \frac{1}{3} < 1$

Theorem (3.3): (Comparison Test) اختبار المقارنة

Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms

- (i) If $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \leq b_n$, $\forall n$, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- (ii) If $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$, $\forall n$, then $\sum_{n=1}^{\infty} a_n$ is also divergent.

Proof:

(i) Let
$$s_n = \sum_{i=1}^n a_i$$
 , $t_n = \sum_{i=1}^n b_i$, $t = \sum_{n=1}^\infty b_n$

Since $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ have positive terms

$$\Rightarrow \langle s_n \rangle$$
 and $\langle t_n \rangle$ are increasing

Also,
$$t_n \to t$$
, so $t_n \le t$, $\forall n$

Since
$$a_i \le b_i$$
, we have $s_n \le t_n$

Thus, $s_n \le t$, $\forall n$ (monotone bounded sequence)

$$\Rightarrow$$
 < s_n > converges

Therefore, $\sum_{n=1}^{\infty} a_n$ converges

(ii) If $\sum_{n=1}^{\infty} b_n$ is divergent, then $t_n \to \infty$

But
$$a_i \ge b_i$$
 so $s_n \ge t_n$

Thus,
$$s_n \to \infty$$

Therefore, $\sum_{n=1}^{\infty} a_n$ diverges
