
Definition (4.4): (Open Set) المجموعة المفتوحة

Let (X, d) be a metric space and $A \subseteq X$, then A is said to be **open set** if every point of A is an interior point, i.e. $A = A^{\circ}$.

Example (4.9):

- (1) $A = \{x \in R: -1 < x < 1\}$ Since $A^{\circ} = (-1,1) = A \implies A$ is an open set.
- (2) $A = \{x \in R : 0 \le x\}$ Since $A^{\circ} = (0, \infty) \ne A \Rightarrow A$ is not an open set.
- (3) A = RSince $R^{\circ} = (-\infty, \infty) = R \implies R$ is an open set.
- (4) A = QSince $Q^{\circ} = \emptyset \neq Q \implies Q$ is not an open set.

Definition (4.5): (Closed Set) المجموعة المغلقة

Let (X, d) be a metric space and $A \subseteq X$, then A is said to be **closed set** if X - A is open set.

Example (4.10):

- (1) $A = \{x \in R: -1 < x < 1\} \Rightarrow A \text{ is not a closed set.}$
- (2) $A = \{x \in R : 0 \le x\} \Rightarrow A \text{ is a closed set.}$
- (3) $A = R \implies R$ is a closed set.
- (4) $A = Q \implies Q$ is not a closed set.

Note (4.2): A subset which is both open and closed is called Clopen set.

Remark (4.1): Every open ball is open set.

Proof: Let $B_r(a)$ be an open ball.

Let
$$x \in B_r(a)$$
 and $\varepsilon = r - d(x, a)$

If $y \in B_{\varepsilon}(x)$

$$\Rightarrow d(y,a) \le d(y,x) + d(x,a) < \varepsilon + d(x,a) = r$$

Thus, $y \in B_r(a)$

$$\Rightarrow B_{\varepsilon}(x) \subseteq B_r(a).$$

Theorem (4.2): Let (X, d) be a metric space, then:

- (1) The sets \emptyset and X are both open.
- (2) Any union of open sets is open.
- (3) Finite intersection of open sets is open.

Proof:

- (1) Since Ø contains no points, the result follows
 - $\Rightarrow \emptyset$ is open

Now, since $\forall x \in X, \exists \varepsilon > 0$, s.t. $B_{\varepsilon}(x) \subseteq X$,

- $\Rightarrow X$ is open
- (2) Let $\{G_{\alpha}\}$ be a family of open sets

Let $x \in \bigcup_{\alpha} G_{\alpha}$

$$\Rightarrow x \in G_{\alpha}$$
 for some α

Since G_{α} is open

$$\Rightarrow \exists \varepsilon > 0$$
, s.t. $B_{\varepsilon}(x) \subseteq G_{\alpha}$

$$\Rightarrow B_{\varepsilon}(x) \subseteq \bigcup_{\alpha} G_{\alpha}$$

- $\therefore \bigcup_{\alpha} G_{\alpha}$ is open set.
- (3) Let $\{G_i, 1 \le i \le n\}$ be a family of open sets

Let $x \in \bigcap_{i=1}^n G_i$

$$\Rightarrow x \in G_i, \forall i$$

Since G_i is open $\forall i$

$$\Rightarrow \exists \varepsilon > 0$$
, s.t. $B_{\varepsilon}(x) \subseteq G_i$, $\forall i$

$$\Rightarrow B_{\varepsilon}(x) \subseteq \bigcap_{i=1}^{n} G_{i}$$

 $\therefore \bigcap_{i=1}^n G_i$ is open set.

Note (4.3): Infinite intersection of open sets in metric space may not be open.

Example (4.11): Let $G_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, $n \in \mathbb{N}$ be a family of open sets

$$G_1 = (-1,1), G_2 = \left(-\frac{1}{2},\frac{1}{2}\right), G_3 = \left(-\frac{1}{3},\frac{1}{3}\right), \dots, G_{\infty} = \left(-\frac{1}{\infty},\frac{1}{\infty}\right) = \{0\}$$

 $\Rightarrow \bigcap_{n=1}^{\infty} G_n = \{0\}$ which is not open

تقطة الغاية (Limit Point) نقطة الغاية

Let (X, d) be a metric space. If $A \subset X$, we say that the point $x \in X$ is a **limit** point of A iff $\forall B_{\varepsilon}(x) \ni x$; $(B_{\varepsilon}(x) \cap A) \setminus \{x\} \neq \emptyset$, for any $\varepsilon > 0$.

المجموعة المشتقة Definition (4.6): (Derived Set)

Let (X, d) be a metric space and $A \subseteq X$, The set of <u>all</u> limit points in A is called **derived set** of A and denoted by A'. If $A' \subseteq A$ then A is a closed set.

Example (4.12): Let (R, d) be a metric space and A = [2,3)

Since when x = 2, we have $\forall B_{\varepsilon}(2) \ni 2$; $(B_{\varepsilon}(2) \cap [2,3)) \setminus \{2\} \neq \emptyset$

 \Rightarrow 2 is a limit point

and when x = 3, we have $\forall B_{\varepsilon}(3) \ni 3$; $(B_{\varepsilon}(3) \cap [2,3)) \setminus \{3\} \neq \emptyset$

 \Rightarrow 3 is a limit point

 $\therefore A' = [2,3]$

Example (4.13):

(1) A = R is a closed set

Since $\forall x \in R$ and $\forall B_{\varepsilon}(x) \ni x$; $(B_{\varepsilon}(x) \cap R) \setminus \{x\} \neq \emptyset$.

$$\Rightarrow R' = (-\infty, \infty) = R$$

(2) Q is not a closed set

Since
$$Q \in R$$
, and $\forall x \in R$, $\forall B_{\varepsilon}(x) \ni x$; $(B_{\varepsilon}(x) \cap Q) \setminus \{x\} \neq \emptyset$.

Thus,
$$Q' = (-\infty, \infty) = R \nsubseteq Q$$

Theorem (4.3): Let (X, d) be a metric space, then:

- (1) The sets \emptyset and X are both closed.
- (2) Any intersection of closed sets is closed.
- (3) Finite union of closed sets is closed.

Proof:

(1) Since X is open

$$\Rightarrow X^c = \emptyset$$
 is closed

And since Ø is open

$$\Rightarrow \emptyset^c = X$$
 is closed

(2) Let $\{F_{\alpha}\}$ be a family of closed sets

Since F_{α} is closed, $\forall \alpha$

$$\Rightarrow F_{\alpha}^{c}$$
 is open, $\forall \alpha$

$$\Rightarrow \bigcup_{\alpha} F_{\alpha}^{c}$$
 is open set.

$$\Rightarrow \left(\bigcup_{\alpha} F_{\alpha}^{c}\right)^{c} = \bigcap_{\alpha} F_{\alpha}$$
 is closed set

(3) Let $\{F_i, 1 \le i \le n\}$ be a family of closed sets

Since F_i is closed, $\forall i$

$$\Rightarrow F_i^c$$
 is open, $\forall i$

$$\Rightarrow \bigcap_{i=1}^n F_i^c$$
 is open set.

$$\Rightarrow (\bigcap_{i=1}^n F_i^c)^c = \bigcup_{i=1}^n F_i$$
 is closed set.

Definition (4.7): (Closure of a Set) انغلاق المجموعة

Let (X, d) be a metric space and $A \subset X$, the **closure** of a set A, is defined as: $\overline{A} = A \cup A'$.