Example (4.14):

(1)
$$A = \{1,2,3\}$$

 $\forall x \in A, B_{\varepsilon}(x) \ni x ; (B_{\varepsilon}(x) \cap A)\{x\} = \emptyset \Rightarrow A' = \emptyset$
 $\Rightarrow \overline{A} = A \cup A' = \{1,2,3\}$

(2)
$$A = Q$$

 $\Rightarrow Q' = R$
 $\Rightarrow \overline{Q} = Q \cup Q' = Q \cup R = R$

Definition (4.8): (Exterior Set) المجموعة الخارجية

Let (X, d) be a metric space and $A \subset X$, the **exterior set** of A, is defined as: $A^e = A^{c^\circ}$.

Example (4.15): Let (R, d) be a metric space and A = (1,5]

$$A^c = (-\infty, 1] \cup (5, \infty)$$

$$A^e = A^{c^{\circ}} = (-\infty, 1) \cup (5, \infty)$$

مجموعة الحدود (Boundary Set) مجموعة الحدود

Let (X, d) be a metric space and $A \subset X$, the **boundary set** of A, is defined as: $A^b = \bar{A} - A^{\circ}$.

Example (4.16): Let (R, d) be a metric space and A = (0,2)

$$A^{\circ} = (0,2)$$

$$\bar{A} = [0,2]$$

$$A^b = \bar{A} - A^\circ = [0,2] - (0,2) = \{0,2\}$$

Definition (4.10): Let (X, d) be a metric space. Let $< x_n >$ be a sequence in X.

We say that $\langle x_n \rangle$ is **convergent** to x_0 if

$$\forall \; \varepsilon > 0 \; \text{,} \exists \; k \in N \quad s.t. \quad d(x_n, x_0) < \varepsilon \; \text{,} \; \forall \; \; n > k \; .$$

i.e.
$$\lim_{n\to\infty} x_n = x_0$$
 or $x_n \to x_0$

If no such number x_0 exists, we say that $\langle x_n \rangle$ diverges.

Proposition (4.1): If $\langle x_n \rangle$ is convergent, and $x_n \to x_0$ then x_0 is unique.

Proof: Assume $x_0 \neq y_0$ and $x_n \rightarrow x_0$, $x_n \rightarrow y_0$

Assume $d(x_0, y_0) = r$

Let $B_{\frac{r}{2}}(x_0)$ and $B_{\frac{r}{2}}(y_0)$

Now,
$$B_{\frac{r}{2}}(x_0) \cap B_{\frac{r}{2}}(y_0) = \emptyset$$

By definition of convergent $B_{\frac{r}{2}}(x_0)$ contains almost element of $< x_n >$

And $B_{\frac{r}{2}}(y_0)$ contains almost element of $\langle x_n \rangle$ C!

Thus, $x_0 = y_0$

⇒ The convergent point is unique

Definition (4.11): Let (X, d) be a metric space. Then the sequence $\langle x_n \rangle$ is said to be **bounded** iff $\exists M \in R$ s.t. $d(x_n, 0) \leq M, \forall n$.

Definition (4.12): Let (X, d) be a metric space. The sequence $\langle x_n \rangle$ is called a **Cauchy sequence (essential sequence)** if for every $\forall \varepsilon > 0$, $\exists k \in N$ s.t. $d(x_m, x_n) < \varepsilon, \forall m, n > k$.

Proposition (4.2): If (X, d) is a metric space, then every convergent sequence is Cauchy sequence.

Proof:

Let $\langle x_n \rangle$ be a convergent sequence i.e. $x_n \to x_0$.

Let $\varepsilon > 0$ then $\exists \ k \in \mathbb{N} \text{ s.t. } d(x_n, x_0) < \frac{\varepsilon}{2} \text{ , } \forall \ n > k$

Now,
$$d(x_n, x_m) \le d(x_n, x_0) + d(x_0, x_m)$$

 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

$$\Rightarrow d(x_n, x_m) < \varepsilon, \forall n, m > k$$

 \therefore < x_n > is Cauchy sequence

Note (4.4): The converse of the above proposition is not true as shown in the following example.

Example (4.17):

- (1) Let $X = R/\{0\}$, d is the absolute value the $<\frac{1}{n}>$ is Cauchy sequence but not convergent in X.
- (2) Let X = Q, and $\langle x_n \rangle = \{1,1.4,1.41,1.414,...\} \rightarrow \sqrt{2} \notin Q$ then $\langle x_n \rangle$ is Cauchy sequence but not convergent in X.

.....

Definition (4.13): A space is **complete** if every Cauchy sequence is convergent.

Theorem (4.4): The Euclidian spaces R^k are complete $\forall k$.

Proof:

It is enough to prove that it is true for k = 2

Let $\langle z_m \rangle$ be Cauchy sequence in \mathbb{R}^2

Let $\varepsilon > 0$, assume $z_m = (x_m, y_m)$, where $x_m, y_m \in R$

Since $\langle z_m \rangle$ is Cauchy sequence

 $\exists\; k \in N \text{ s.t. } d(z_m, z_n) < \varepsilon\;, \forall\; m, n > k$

i.e.
$$\sqrt{(x_m - x_n)^2 + (y_m - y_n)^2} < \varepsilon$$

$$\Rightarrow (x_m - x_n)^2 + (y_m - y_n)^2 < \varepsilon^2$$

$$\Rightarrow |x_m - x_n| < \varepsilon \text{ and } |y_m - y_n| < \varepsilon$$
 , $\forall m, n > k$

Since $\langle x_m \rangle$ and $\langle y_m \rangle$ are Cauchy Sequence in R and

Since R is a complete space

$$\Rightarrow$$
 < x_m > and < y_m > are convergent

Therefore, $\exists x_0, y_0 \in R \text{ s.t. } x_m \to x_0 \text{ and } y_m \to y_0$

i.e.
$$\exists \ k \in \mathbb{N} \text{ s.t. } |x_m - x_0| < \frac{\varepsilon}{2} \text{ and } |y_m - y_0| < \frac{\varepsilon}{2} \ , \ \forall \ m > k$$

Let
$$z_0 = (x_0, y_0)$$

$$\Rightarrow \left(d(z_m, z_0)\right)^2 = (x_m - x_0)^2 + (y_m - y_0)^2$$
$$< \frac{\varepsilon^2}{4} + \frac{\varepsilon^2}{4} = \frac{\varepsilon^2}{2}$$

$$\Rightarrow d(z_m, z_0) < \varepsilon, \forall m > k$$

- \Rightarrow < $z_m >$ is a convergent
- \therefore R^2 is complete metric space.

التطبيق الانكماشي (Contraction Mapping) التطبيق الانكماشي

Let (X, d) be a metric space. A mapping $f: X \to X$ is a **contraction mapping** if \exists constant c, with $0 \le c < 1$, s.t. $d(f(x), f(y)) \le cd(x, y)$, $\forall x, y \in X$.

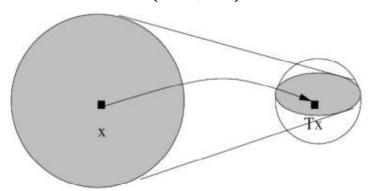


Figure (4.1). f is a contraction mapping

Theorem (4.5): (Contraction Mapping Theorem) نظرية التطبيق الانكماشي

Let (X, d) be a complete metric space. Let $f: X \to X$ is a contraction mapping, then \exists unique x such that f(x) = x.

Proof:

Let x_0 be any point in X, we define a sequence $\langle x_n \rangle$ in X by

$$x_n = f(x_{n-1})$$
, for each $n \in N$

i.e.
$$x_1 = f(x_0)$$

$$x_2 = f(x_1) = f(f(x_0)) = f^2(x_0)$$