الاشتقاق الجزئي

Let f(x, y) be defined in a region R of the xy-plan. If we think of y as fixed and x as variable, the derivative of f(x, y) with respect to x is called the partial derivative with respect to x. This partial derivative is denoted by $\frac{\partial f}{\partial x}$ or f_x and defined by :

$$\frac{\partial f}{\partial x} = f_x(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

If we write z = f(x, y), the partial derivative is also denoted by $\frac{\partial z}{\partial x}$ or z_x .

Likewise, the partial derivative with respect to y, $\frac{\partial f}{\partial v}$ or $\frac{\partial z}{\partial v}$ or z_y , is the derivative of f(x, y) with respect to y when x is regarded (y with respect to y when y is regarded (y with y). as a constant and defined by:

$$z_{y} = \frac{\partial f}{\partial y} = f_{y}(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

Example 1: If

$$z = x^{2}y + e^{-xy^{3}}$$

$$\frac{\partial z}{\partial x} = 2xy - y^{3}e^{-xy^{3}}$$

$$\frac{\partial z}{\partial y} = x^{2} - 3xy^{2}e^{-xy^{3}}$$

Solution:

Example 2: By using the definition of derivative, find f_x , f_y for the following:

1-
$$z = f(x, y) = x - y^2$$
 2- $z = f(x, y) = \frac{x}{y}$

Solution: 1 the derivative with respect to x is

المشتقة بالنسبة ل χ هي

$$z_{x} = f_{x}(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x + \Delta x - y^{2} - (x - y^{2})}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x + \Delta x - y^{2} - x + y^{2}}{\Delta x} = \lim_{\Delta x \to 0} 1 = 1$$

 $z_{x}=1$ غاية الثابت يساوي الثابت نفسه

the derivative with respect to y is

$$z_{y} = f_{y}(x, y) = \lim_{\Delta y \to 0} \frac{x - (y + \Delta y)^{2} - (x - y^{2})}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{x - y^{2} - 2y\Delta y - (\Delta y)^{2} - x + y^{2}}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{\Delta y(-2y - \Delta y)}{\Delta y} = \lim_{\Delta y \to 0} -2y - \Delta y = -2y$$

$$\therefore z_{y} = -2y$$

$$2.f(x,y) = \frac{x}{y}$$

The derivative with respect to x is

$$f_{x}(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\frac{x + \Delta x}{y} - \frac{x}{y}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{x + \Delta x - x}{y}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{y \Delta x} = \frac{1}{y}$$

$$\therefore f_{x} = \frac{1}{y}$$

Now, the derivative with respect to y is

$$z_{y} = f_{y}(x, y) = \lim_{\Delta y \to 0} \frac{\frac{x}{y + \Delta y} - \frac{x}{y}}{\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{\frac{xy - x(y + \Delta y)}{(y + \Delta y)y}}{\Delta y} = \lim_{\Delta y \to 0} \frac{xy - xy - x\Delta y}{y\Delta y(y + \Delta y)} = \lim_{\Delta y \to 0} \frac{-x}{y^{2} + y\Delta y}$$

$$= \frac{-x}{y^{2} + y(0)} = -\frac{x}{y^{2}}$$

$$\therefore z_{y} = -\frac{x}{y^{2}}$$

Example 3: Find z_x and z_y for the following

1)
$$z = x - y^2$$
, 2) $z = e^{xy}$, 3) $z = xe^{x^2y}$, 4) $z = x^2 \sin(xy^2)$

Solution:1 the derivative as

1.
$$z_x = 1$$
 , $z_y = -2y$

$$2. \quad z_x = ye^{xy} \quad , \quad z_y = xe^{xy} \quad ,$$

3.
$$z_x = x(e^{x^2y}.2xy) + e^{x^2y} = (2x^2y + 1)e^{x^2y},$$

 $z_y = x^3e^{x^2y}.$

4.
$$z_x = x^2(\cos(xy^2).y^2) + 2x \sin(xy^2)$$

 $\therefore z_x = x^2y^2 \cos(xy^2) + 2x \sin(xy^2)$,

$$z_y = x^2 \cos(xy^2).2xy$$

 $\therefore z_y = 2x^3y \cos(xy^2).$

Example 4: If $z = \frac{x}{y}$, prove that $(xz_x + yz_y = 0)$

Solution: The derivative with respect to x and y are

$$z_x = \frac{1}{y}, \quad z_y = -\frac{x}{y^2}$$

$$\left[x(\frac{1}{y}) + y(-\frac{x}{y^2})\right] = \frac{x}{y} - \frac{x}{y} = 0$$

Example 5: If $w = f(x, y, z) = xy + yz^2 + xz$, find $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}$

Solution: The derivative with respect to x, y and z are respectively as

$$\frac{\partial w}{\partial x} = w_x = y + z$$

$$\frac{\partial w}{\partial y} = w_y = x + z^2$$

$$\frac{\partial w}{\partial z} = w_z = 2yz + x$$

Example 6: If $w = f(x, y, z) = z \sin(xy^2 + 2z)$, find $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}$

Solution: The derivative with respect to x, y and z are respectively as

$$\frac{\partial w}{\partial x} = w_x = z \cos(xy^2 + 2z)y^2 = y^2 z \cos(xy^2 + 2z),$$

$$\frac{\partial w}{\partial y} = w_y = z \cos(xy^2 + 2z)2xy = 2xyz \cos(xy^2 + 2z)$$

$$\frac{\partial w}{\partial z} = w_z = z \cos(xy^2 + 2z) \cdot 2 + \sin(xy^2 + 2z),$$

Higher order partial derivatives المشتقات الجزئية ذوات الرتب العليا

If z = f(x, y), then the four second partial derivatives are

$$\frac{\partial}{\partial x} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial^2 f}{\partial x^2} = f_{xx} = z_{xx}$$
$$\frac{\partial}{\partial y} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial^2 f}{\partial y \partial x} = f_{xy} = z_{xy}$$

$$\frac{\partial}{\partial x} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial^2 f}{\partial x^2} = f_{xx} = z_{xx}$$

$$\frac{\partial}{\partial y} \left[\frac{\partial f}{\partial y} \right] = \frac{\partial^2 f}{\partial y^2} = f_{yy} = z_{yy}$$

$$\frac{\partial}{\partial y} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial^2 f}{\partial y \partial x} = f_{xy} = z_{xy}$$

$$\frac{\partial}{\partial x} \left[\frac{\partial f}{\partial y} \right] = \frac{\partial^2 f}{\partial x \partial y} = f_{yx} = z_{yx}$$

Example 1: If $f(x,y) = 3xy + y^2 + 2x$, find the four second partial derivatives i.e. $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$.

Solution:

$$\frac{\partial f}{\partial x} = 3y + 2$$

$$\frac{\partial}{\partial x} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial^2 f}{\partial x^2} = 0$$

$$\frac{\partial}{\partial y} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial^2 f}{\partial y \partial x} = 3$$

$$\frac{\partial f}{\partial y} = 3x + 2y$$

$$\frac{\partial f}{\partial y} = 3x + 2y$$

$$\frac{\partial}{\partial y} \left[\frac{\partial f}{\partial y} \right] = \frac{\partial^2 f}{\partial y^2} = 2$$

$$\frac{\partial}{\partial x} \left[\frac{\partial f}{\partial y} \right] = \frac{\partial^2 f}{\partial x \partial y} = 3$$

Example 2: If $f(x,y) = x^4 + 2x^2y + 3xy^3$, find the four second partial derivatives i.e. f_{xx} , f_{yy} , f_{xy} , f_{yx} .

Solution:

$$f_x = 4x^3 + 4xy + 3y^3$$

$$f_{xx} = 12x^2 + 4y$$

$$f_{xy} = 4x + 9y^2$$

$$f_y = 2x^2 + 9xy^2$$

$$f_{yy} = 18xy$$

$$f_{yx} = 4x + 9y^2$$

$$f_{yy} = 18xy$$

$$f_{vx} = 4x + 9y^2$$

Exercise 1 : Find the four second partial derivative i.e. f_{xx} , f_{yy} , f_{xy} , f_{yx} for the following

1-
$$f(x,y) = x^2 y e^{(x+y^2)}$$
, 2- $f(x,y) = 5x^2 + 18xy + x - 2y$,

Exercise 2 : If $w = ye^x + x \ln z$, show that

- $1) \quad \mathbf{w}_{xz} = \mathbf{w}_{zx}$
- $2) \quad \mathbf{w}_{xzz} = \mathbf{w}_{zxz} = \mathbf{w}_{zzx}$

Exercise 3 : If $z = xye^{x+y}$, then find $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y\partial x}$, $\frac{\partial^2 z}{\partial x\partial y}$, $\frac{\partial^3 z}{\partial x\partial y\partial x}$.

Laplace Equation (معادلة لابلاس)

Definition: A function z = f(x, y) is called Harmonic function (دالة توافقية) iff satisfy the Laplace equation.

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

If w = f(x, y, z) be a function of three variables, then the Laplace equation has the form

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

Example: Show that the following functions are Harmonic

1.
$$z = e^{-y} cos x$$
,

2.
$$z = e^x \sin y$$

Solution:1. $z = e^{-y} cos x$

we must show this function is satisfy Laplace equation i.e.

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

$$\frac{\partial z}{\partial x} = -e^{-y} \sin x$$

$$\frac{\partial^2 z}{\partial x^2} = -e^{-y} \cos x$$

$$\frac{\partial^2 z}{\partial x^2} = -e^{-y} \cos x$$

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = -e^{-y} \cos x + e^{-y} \cos x = 0$$

Its satisfied Laplace equation.

Advanced Calculus

المحاضرة الاولى /الاشتقاق الجزئي

2.
$$z = e^x \sin y$$

$$\frac{\partial z}{\partial x} = e^x \sin y$$

$$\frac{\partial z}{\partial y} = e^x \cos y$$

$$\frac{\partial^2 z}{\partial x^2} = e^x \sin y$$

$$\frac{\partial^2 z}{\partial y^2} = -e^x \sin y$$

$$\therefore \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^x \sin y + -e^x \sin y = 0$$

Its satisfied Laplace equation.

Example: if $w = e^{(3x+4y)} \sin(5z)$, Prove that it satisfied Laplace equation

Solution: we must show that

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = 0$$

$$\frac{\partial w}{\partial x} = 3e^{(3x+4y)}\sin(5z)$$

$$\frac{\partial w}{\partial x} = 3e^{(3x+4y)}\sin(5z)$$

$$\frac{\partial^2 w}{\partial x^2} = 9e^{(3x+4y)}\sin(5z)$$

$$\frac{\partial w}{\partial y} = 4 \ e^{(3x+4y)} \sin(5z)$$

$$\frac{\partial w}{\partial y} = 4 \ e^{(3x+4y)} \sin(5z)$$

$$\frac{\partial^2 w}{\partial y^2} = 16 \ e^{(3x+4y)} \sin(5z)$$

$$\frac{\partial w}{\partial z} = 5 e^{(3x+4y)} \cos(5z)$$

$$\frac{\partial w}{\partial z} = 5 e^{(3x+4y)} \cos(5z)$$
$$\frac{\partial^2 w}{\partial z^2} = -25 e^{(3x+4y)} \sin(5z)$$

$$\therefore 9 e^{(3x+4y)} \sin(5z) + 16 e^{(3x+4y)} \sin(5z) - 25 e^{(3x+4y)} \sin(5z) = 0$$

Its satisfied Laplace equation.

Exercise: Show that the following functions are satisfied Laplace equation

1.
$$f(x,y) = \ln(4x^2 + 4y^2)$$
, 2. $f(x,y) = e^{-y} \sin x$
3. $f(x,y) = x^2 - y^2$ 4. $f(x,y) = x^2 + y^2 - 2z^2$

2.
$$f(x, y) = e^{-y} \sin x$$

3.
$$f(x,y) = x^2 - y^2$$

4.
$$f(x,y) = x^2 + y^2 - 2z^2$$

Exercise: If $f(x,y) = \ln(x - y)$,

- 1.find the four second partial derivatives
- 2. prove that $f_{xy} = f_{yx}$
- 3. Is the above function satisfied Laplace?