10th Lecture

Theorem (3.2): Let (X, τ) be a topological space. If X = A/B (i.e. X is separable set). Then A, B are both open and closed distinct subsets of X.

Proof:

We have X = A/B

$$\Rightarrow A, B \neq \emptyset, A \cap B = \emptyset, Also$$

$$(A \cap \bar{B}) \cup (B \cap \bar{A}) = \emptyset$$

$$\Rightarrow A \cap \overline{B} = \emptyset \land B \cap \overline{A} = \emptyset$$

If
$$A \cap \bar{B} = \emptyset$$

$$\Rightarrow A \cap (B \cup d(B)) = \emptyset$$

$$\Rightarrow (A \cap B) \cup (A \cup d(B)) = \emptyset$$

But
$$A \cap d(B) = \emptyset$$

 \Rightarrow No point of A is a limit point of B

 \Rightarrow limit points of B all in B

$$\Rightarrow d(B) \subset B \Rightarrow B \text{ is closed}$$

$$\Rightarrow B^c$$
 is open $\Rightarrow A$ is open

Also if
$$B \cap \bar{A} = \emptyset$$

 \Rightarrow all points of A are in A

 \Rightarrow A is closed

 $\Rightarrow A^c$ is open

 \Rightarrow B open

.....

Theorem (3.3): If C is connected in (X, τ) and X = A/B. Then $C \subseteq A$ or $C \subseteq B$.

Theorem (3.4): If C is connected in (X, τ) and $C \subseteq E \subseteq \overline{C}$. Then E is connected in (X, τ) .

Proof:

Assume (if possible) *E* is not connected

$$\Rightarrow E = A/B, A, B \neq \emptyset$$

Now C is connected in E = A/B

$$\Rightarrow C \subset A \text{ or } C \subset B$$

If
$$C \subset A \Rightarrow \bar{C} \subset \bar{A} \Rightarrow \bar{C} \cap B \subset \bar{A} \cap B = \emptyset$$

$$B \subset E \land E \subset \bar{C} \Rightarrow B \subset \bar{C}$$

From (1) and (2) we get

 $B = \emptyset \Rightarrow \text{Contradiction}$

 \Rightarrow E is connected.

Theorem (3.5): A topological space (X, τ) is connected iff the only open and closed sets in X are \emptyset , X.

Proof:

Suppose that (X, τ) is connected.

Assume that $\exists A \neq \emptyset$ and $A \subset X$ is both open and closed

 $\Rightarrow B = A^c$ is both open and closed

We have $A, B \neq \emptyset$, $A \cap B = \emptyset$, $A \cup B = X$

Also $(\bar{A} \cap B) \cup (A \cap \bar{B}) = \emptyset$

 $\Rightarrow X = A/B \Rightarrow$ Contradiction

Hence the only open closed sets in X are \emptyset , X

Conversely: Suppose that \emptyset , X are the only open closed in X

We need to prove that X is connected

Assume that *X* is not connected

- $\Rightarrow X = A/B$
- \Rightarrow both A and B are open and closed
- ⇒ Contradiction
- \therefore (*X*, τ) is connected.
