Proposition (4.4): Let (X, d) be a metric space then every compact set is closed.

Proof: Let $A \subset X$ be a compact subset

Suppose $x, y \in X$ s.t. $x \notin A$, $y \in A$ and

$$d(x, y) = r$$
 s.t. $B_{\frac{r}{2}}(x) \cap B_{\frac{r}{2}}(y) = \emptyset$, $\forall y \in A$

Since *A* is compact

 $\Rightarrow \exists$ finitely many points in A

i.e. $y_1, y_2, ..., y_n$ in A

s.t.
$$A \subset B_{\frac{r_1}{2}}(y_1) \cup B_{\frac{r_2}{2}}(y_2) \cup ... \cup B_{\frac{r_n}{2}}(y_n) = G_1$$

Let
$$G_2 = B_{\frac{r_1}{2}}(x) \cap B_{\frac{r_2}{2}}(x) \cap \dots \cap B_{\frac{r_n}{2}}(x)$$

We have $G_1 \cap G_2 = \emptyset$

- $\Rightarrow G_2 \subset A^c$
- \Rightarrow x is an interior point of A^c
- $\Rightarrow A^c$ is an open set
- \Rightarrow A is closed set

Corollary (4.1): If F is a closed set and K is a compact set, then $F \cap K$ is a compact set.

Proof: Since K is a compact set

 \Rightarrow K is a closed set

Since *F* and *K* are closed sets

- $\Rightarrow F \cap K$ is a closed set and $F \cap K \subset K$
- $\Rightarrow F \cap K$ is a compact set

Proposition (4.5): Let (X, d) be a metric space then every compact set is bounded.

Proof: Let *E* be a compact set in *X* and $x_0 \in X$

Put $B_n = \{x \in X : d(x, x_0) < n\}$, $\forall n \in \mathbb{N}$, B_n is an open set.

Let $x \in E$, then $\exists n \in N$ s.t. $d(x, x_0) < n$

$$\Rightarrow x \in B_n$$

$$\Rightarrow E \subseteq \bigcup_n B_n$$

$$\Rightarrow \{B_n : n \in N\}$$
 is an open cover for E

But E is a compact set, then $\exists k \in N \text{ s.t. } E \subseteq \bigcup_{n=1}^k B_n$

$$B_1\subseteq B_2\subseteq B_3\subseteq\cdots$$

Then
$$\bigcup_{n=1}^k B_n = B_k$$

$$\Rightarrow E \subseteq B_k$$

 \Rightarrow E is bounded.

تظریة هاین - بوریل (Heine – Borel Theorem) نظریة هاین - بوریل

A subset of *R* is compact iff it is closed and bounded.

Proof: Let $E \subset R$ be a compact set

By Propositions (4.4) and (4.5),

 \Rightarrow E is closed and bounded set

Now, let E be a closed and bounded set in R

Since *E* is bounded

$$\Rightarrow \exists M \in R$$
, s.t. $|x| \le M$, $\forall x \in E$

$$\Rightarrow E \subset [-M, M]$$

Since [-M, M] is closed interval in R

 $\Rightarrow [-M, M]$ is compact

Since *E* is closed

 \Rightarrow E is compact

Connectedness in Metric Spaces

الترابط في الفضاءات المترية

Definition (4.17): (Separation) الانفصال

Let (X, d) be a metric space. We say that the set E is **separable** in (X, d), if there is two open sets A, B such that

- (i) $A, B \neq \emptyset$
- (ii) $A \cap B = \emptyset$
- (iii) $E \subseteq A \cup B$

Example (4.20): The set $E = \{0,2\}$ is separable set in (R,d)

Since $\exists A = (-1,1)$ and B = (1,3) satisfy

- $(1) A, B \neq \emptyset$
- $(2) A \cap B = (-1,1) \cap (1,3) = \emptyset$
- (3) $E = \{0,2\} \subset (-1,1) \cup (1,3) = A \cup B$

Definition (4.18): (Connectedness) الترابط

Let (X, d) be a metric space. We say that a subset E is connected if there does not exist a separation for E in (X, d).

Example (4.21): The set E = [0,2] is connected set in (R,d), since there does not exist a separation for [0,2] in (R,d).

Proposition (4.6): A metric space (X, d) is connected if and only if the only clopen subsets of X are the empty set.

Chapter Five الاستمرارية Continuity

الدالة المستمرة (Continuous Function)

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is **continuous** at $x_0 \in X$ if

$$\forall \ \varepsilon > 0, \exists \ \delta > 0, \ \delta = \delta(\varepsilon, x_0) \text{ s.t. if } d_X(x, x_0) < \delta \ \Rightarrow d_Y \big(f(x), f(x_0) \big) < \varepsilon.$$
 i.e. In terms of open balls, $f \big(B_\delta(x_0) \big) \subset B_\varepsilon \big(f(x_0) \big)$

Example (5.1): Let (R, d) be usual metric space then every constant function is continuous.

Proof:

We have $d(x, y) = |x - y|, \ \forall x, y \in R$

Let $f: (R, d) \to (R, d)$ defined by

f(x) = c, $\forall x \in R$, c is constant

Let $\varepsilon > 0$, $\exists \ \delta > 0$, s.t. $d(x, x_0) = |x - x_0| < \delta$

$$\Rightarrow d(f(x), f(x_0)) = |f(x) - f(x_0)|$$
$$= |c - c| = 0 < \varepsilon$$

$$\therefore d(f(x), f(x_0)) < \varepsilon$$

 \Rightarrow f is continuous function

Example (5.2): Prove that every identity function is continuous.

Proof:

Let (R, d) be usual metric space

Let $f:(R,d) \to (R,d)$ defined by

$$f(x) = x$$
, $\forall x \in R$