(3)	Show	that	if f	is	Riemann	integrable	on	[a,b],	then	f^2	also	is	Riemann
	integra	able c	on [a	,b]									

Chapter Three نظریة القیاس Measure Theory

الفترة المفتوحة (Open Interval) الفترة المفتوحة

Let $a, b \in R$ and a < b we define the **open interval** as

$$(a, b) = \{x \in R : a < x < b\}$$

We will denoted for an open interval by I, and consider \emptyset is an open interval.

طول الفترة (Length of Interval) طول الفترة

Let I be an open interval (bounded), the **length** of interval I defined as

$$\Delta(I) = \begin{cases} b - a, & I = (a, b) \\ 0, & I = \emptyset \end{cases}$$

Where $\Delta(I)$ is a measure of the length of interval I.

Note (3.1):

- (1) $\Delta(I) \geq 0$.
- (2) $\Delta(I) = 0 \Leftrightarrow I = \emptyset$.
- (3) If $I_1 \subset I_2$ then $\Delta(I_1) < \Delta(I_2)$.
- (4) In some references, the length of I is denoted by the |I|.

Example (3.1): Let $I_1 = (0,2)$, $I_2 = (-3,3)$, $I_3 = (4,9)$ and $I_4 = \emptyset$, find the lengths of these open intervals.

Solution:

$$\Delta(I_1) = 2 - 0 = 2 ,$$

$$\Delta(I_2) = 3 - (-3) = 6 \; ,$$

$$\Delta(I_3) = 9 - 4 = 5 \; ,$$

 $\Delta(I_4)=0.$

Note the

$$I_1 = (0,2) \subset I_2 = (-3,3)$$

and

$$\Delta(I_1) = 2 < \Delta(I_2) = 6$$

Theorem (3.1): Every open set G of R can be written uniquely as a countable union of disjoint open intervals.

Definition (3.3): If G is an open subset of [a, b], $G = \bigcup_{n} I_n$, $n \in N$ then the **length** of *G* is defined as

$$\Delta(G) = \Delta(\bigcup_{n} I_{n}) = \sum_{n=1}^{\infty} \Delta(I_{n})$$

Where $\Delta(I_n)$ denotes the length of the interval I_n , $n \in \mathbb{N}$.

Note (3.2):

- (1) $\Delta(G) \geq 0$.
- (2) $\Delta(G) = 0 \iff G = \emptyset$.
- (3) If $G_1 \subset G_2$ then $\Delta(G_1) < \Delta(G_2)$.
- $(4) \ \Delta(G_1 \cup G_2) = \Delta(G_1) + \Delta(G_2) \Delta(G_1 \cap G_2) \ .$

Example (3.2): Let $G_1 = \{(0,1) \cup (1,2) \cup (2,3) \cup (3,4)\}, G_2 = \{(-1,0) \cup (2,4)\},$ find $\Delta(G_1)$, $\Delta(G_2)$, $\Delta(G_1 \cup G_2)$ and $\Delta(G_1 \cap G_2)$.

Solution:

$$\Delta(G) = \Delta(\bigcup_{n} I_{n}) = \sum_{n=1}^{\infty} \Delta(I_{n})$$

$$\Delta(G_1) = \sum_{n=1}^{4} \Delta(I_n) = \Delta(I_1) + \Delta(I_2) + \Delta(I_3) + \Delta(I_4)$$

$$= (1-0) + (2-1) + (3-2) + (4-3) = 4$$

$$\Delta(G_2) = \sum_{n=1}^{2} \Delta(I_n) = \Delta(I_1) + \Delta(I_2)$$

$$= (0-(-1)) + (4-2) = 3$$

Now,

$$G_1 \cup G_2 = \{(-1,0) \cup (0,1) \cup (1,2) \cup (2,4)\},\$$

$$\Delta(G_1 \cup G_2) = (0 - (-1)) + (1 - 0) + (2 - 1) + (4 - 2) = 5$$

and

$$G_1 \cap G_2 = \{(2,3) \cup (3,4)\}$$

$$\Delta(G_1 \cap G_2) = (3-2) + (4-3) = 2$$

Note that

$$\Delta(G_1 \cup G_2) = \Delta(G_1) + \Delta(G_2) - \Delta(G_1 \cap G_2)$$

= 4 + 3 - 2 = 5

Theorem (3.2): If G_1 , G_2 , G_3 , ... are open subsets of [a, b], then

$$\Delta\left(\bigcup_{n=1}^{\infty}G_{n}\right)\leq\sum_{n=1}^{\infty}\Delta(G_{n}).$$

Example (3.3): Let $G_1 = \{(-2,1) \cup (1,3) \cup (4,6)\}, G_2 = \{(0,2) \cup (3,5) \cup (5,7)\}, G_3 = \{(1,3) \cup (3,4) \cup (5,6)\}, \text{ find } \Delta(\bigcup_{n=1}^3 G_n) \text{ and } \sum_{n=1}^3 \Delta(G_n).$

Solution: