11th Lecture

Chapter Four التراص في الفضاءات التبولوجية Compactness in Topological Spaces

Definition (4.1): Let E be a subset in a topological space (X, τ)

(i) We say that the family $\{G_{\alpha}\}_{{\alpha}\in{\Lambda}}$ is a **cover** for E iff $\subset \bigcup_{{\alpha}\in{\Lambda}} G_{\alpha}$.

(ii) We say that the subfamily of $\{G_{\alpha}\}_{\alpha \in \Lambda}$ (say $\{G_{\alpha_i}\}_{\alpha_i \in \Lambda}$ is a **subcover** of E) iff $E \subset \bigcup_{\alpha_i \in \Lambda} G_{\alpha_i}$.

غطاء مفتوح غطاء مفتوح فطاء مفتوح (iii) We say that the family $\{G_{\alpha}\}_{\alpha\in \Lambda}$ is an **open cover** of E iff $E\subset\bigcup_{\alpha\in \Lambda}G_{\alpha}$ and $G_{\alpha}\in \tau,\, \forall\,\,\alpha\in\Lambda$.

(iv) We say that $\{G_{\alpha_i}\}_{i=1}^n$ is an **open finite subcover** of E iff $E \subset \bigcup_{i=1}^n G_{\alpha_i}$, where $G_{\alpha_i} \in \tau$.

Definition (4.2): If E is a subset in (X, τ) . We say that E is **compact** iff for every open cover $\{G_{\alpha}\}_{{\alpha}\in \Lambda}$ of E, there exists a finite subcover of E (say $\{G_{\alpha_i}\}_{i=1}^n$).

<u>In other word</u>: $(E \text{ compact}) \Leftrightarrow \left[\left(E \subset \bigcup_{\alpha \in A} G_{\alpha} \right) \Rightarrow \left(E \subset \bigcup_{i=1}^{n} G_{\alpha_i} \right) \right]$

Example (4.1): If $E = \{x_1, x_2, x_3, ..., x_n\}$ is finite (X, τ) . Then E compact.

Proof: Let $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ be an open cover of *E*

$$\Rightarrow E \subset \bigcup_{\alpha \in A} G_{\alpha} \Rightarrow \exists G_{\alpha_i}, x_i \in G_{\alpha_i}, i = 1, 2, ..., n$$

$$\Rightarrow x_1 \in G_{\alpha_1}, x_2 \in G_{\alpha_2}, \dots x_n \in G_{\alpha_n}$$

$$\Rightarrow \{x_1\} \subset G_{\alpha_1}, \{x_2\} \subset G_{\alpha_2}, \dots \{x_n\} \subset G_{\alpha_n}$$

$$\Rightarrow \bigcup_{i=1}^n \{x_i\} \subset \bigcup_{i=1}^n G_{\alpha_i}$$

$$\Rightarrow E \subset \bigcup_{i=1}^n G_{\alpha_i}$$

- $\Rightarrow \{G_{\alpha_i}\}_{i=1}^n$ is a finite subcover of E.
- \Rightarrow E is compact.

Example (4.2): Determine whether E = (0,1) is compact or not in (R, τ) .

Proof: Let $\{G_n\}_{n\in\mathbb{N}}$ such that $G_n=(\frac{1}{n+1},1)$ be an open cover of .

$$\Rightarrow E \subset \bigcup_{\alpha \in \Lambda} (\frac{1}{n+1}, 1)$$

Let (a_1, b_1) , (a_2, b_2) , ..., (a_n, b_n) be a finite subfamily of $\left\{\left(\frac{1}{n+1}, 1\right)\right\}_{n \in \mathbb{N}}$

Put
$$\varepsilon = min(a_1, a_2, ..., a_m)$$

$$\Rightarrow \bigcup_{i=1}^{m} (a_i, b_i) = (\varepsilon, b_m)$$

Let
$$b_m = 1$$

$$\Rightarrow \bigcup_{i=1}^m (a_i, b_i) = (\varepsilon, 1)$$

Now
$$(0,1) \not\subset (\varepsilon,1)$$
, for $\varepsilon > 0$

$$\Rightarrow$$
 (0,1) $\not\subset \bigcup_{i=1}^m (a_i, b_i)$

There is no finite subcovering for E

 \Rightarrow E is not compact.

Theorem (4.1): Let (X^*, τ^*) be a topological subspace of (X, τ) and $E \subset X^*$. Then E is τ^* -compact iff E is τ -compact.

Proof: Suppose that *E* is τ^* -compact

We need to prove that E is τ -compact

Let $\{G_{\alpha}\}_{{\alpha}\in \Lambda}$ be an open cover of E

$$\Rightarrow E \subset \bigcup_{\alpha \in \Lambda} G_{\alpha}$$

$$\Rightarrow E \cap X^* \subset (\bigcup_{\alpha \in \Lambda} G_\alpha) \cap X^*$$

$$\Rightarrow E \cap X^* \subset \bigcup_{\alpha \in \Lambda} (G_\alpha \cap X^*)$$

$$\Rightarrow E \subset \bigcup_{\alpha \in \Lambda} G_{\alpha}^* \quad \Rightarrow \quad \{G_{\alpha}^*\}_{\alpha \in \Lambda} \text{ is an open cover for } E$$

But *E* is τ^* -compact

$$\Rightarrow \exists \{G_{\alpha_i}^*\}_{i=1}^n \text{ finite subcover for } E$$

$$\Rightarrow E \subset \bigcup_{i=1}^n G_{\alpha_i}^*$$

$$\Rightarrow E \subset \bigcup_{i=1}^n (G_{\alpha_i} \cap X^*)$$

$$\Rightarrow E \subset (\bigcup_{i=1}^n G_{\alpha_i}) \cap X^*$$

$$\Rightarrow E \subset (\bigcup_{i=1}^n G_{\alpha_i})$$

$$\therefore \left(E \subset \bigcup_{\alpha \in \Lambda} G_{\alpha} \right) \Rightarrow \left(E \subset \bigcup_{i=1}^{n} G_{\alpha_{i}} \right)$$

$$\Rightarrow$$
 E is τ -compact

Conversely: Suppose (\Leftarrow) *E* is τ –compact

We need to prove that E is τ^* -compact

Let $\{G_{\alpha}^*\}_{\alpha \in \Lambda}$ be an open cover for E

$$\Rightarrow E \subset \bigcup_{\alpha \in \Lambda} G_{\alpha}^*$$

$$\Rightarrow E \subset \bigcup_{\alpha \in \Lambda} (G_{\alpha} \cap X^*)$$

$$\Rightarrow E \subset (\bigcup_{\alpha \in \Lambda} G_{\alpha}) \cap X^* \subset (\bigcup_{\alpha \in \Lambda} G_{\alpha})$$

$$\Rightarrow E \subset \bigcup_{\alpha \in \Lambda} G_{\alpha}$$

But E is τ -compact

$$\Rightarrow E \subset \bigcup_{i=1}^m G_{\alpha_i}$$

$$\Rightarrow E \cap X^* \subset (\bigcup_{i=1}^m G_{\alpha_i}) \cap X^*$$

$$\Rightarrow E \subset \bigcup_{i=1}^m G_{\alpha_i}^*$$

$$\therefore (E \subset \bigcup_{\alpha \in \Lambda} G_{\alpha}^*) \Rightarrow (E \subset \bigcup_{i=1}^m G_{\alpha_i}^*) \Rightarrow E \text{ is } \tau^*\text{- compact.}$$