Let
$$\varepsilon > 0$$
, $\exists \delta > 0$, s.t. $d(x, x_0) = |x - x_0| < \delta$

$$\Rightarrow d(f(x), f(x_0)) = |f(x) - f(x_0)|$$

$$= |x - x_0| < \delta = \varepsilon$$

$$\therefore d(f(x), f(x_0)) < \varepsilon$$

 \Rightarrow f is continuous function

Example (5.3): Let (R, d) be usual metric space and $f(x) = \frac{1}{x}$, show that f is continuous at 2.

Proof:

Let $\varepsilon > 0$, $\exists \delta > 0$, s.t.

$$d(x,2) = |x - 2| < \delta \implies |x| < \delta + 2$$

$$\Rightarrow d(f(x), f(2)) = |f(x) - f(2)|$$

$$= \left|\frac{1}{x} - \frac{1}{2}\right|$$

$$= \left|\frac{2 - x}{2x}\right|$$

$$= \frac{|x - 2|}{|2x|} < \frac{\delta}{2|x|} < \frac{\delta}{2(\delta + 2)} = \frac{\delta}{2\delta + 4}$$

$$\therefore \quad \varepsilon = \frac{\delta}{2\delta + 4}$$

$$\therefore d(f(x), f(2)) < \frac{\delta}{2\delta + 4} = \varepsilon$$

 \Rightarrow f is continuous function at 2

Example (5.4): Let (R, d) be usual metric space and $f(x) = \sin x$, show that f is continuous at $x_0 \in R$.

Proof:

Let
$$\varepsilon > 0$$
, $\exists \delta > 0$, s.t. $d(x, x_0) = |x - x_0| < \delta$

$$\Rightarrow d(f(x), f(x_0)) = |f(x) - f(x_0)|$$

$$= |\sin x - \sin x_0|$$

$$= \left| 2\cos \frac{x - x_0}{2} \sin \frac{x - x_0}{2} \right|$$

$$\leq \left| 2 \sin \frac{x - x_0}{2} \right|$$

$$\leq 2 \left| \frac{x - x_0}{2} \right| \leq |x - x_0| < \delta = \varepsilon$$

$$\therefore d(f(x), f(x_0)) < \varepsilon$$

 $\Rightarrow f$ is continuous function at x_0

Remark (5.1): If f is continuous at each point $x \in X$. Then we say that f is continuous on X.

Theorem (5.1): A function $f: X \to Y$ is continuous iff the inverse image of each open set in Y is open in X.

Proof:

Suppose that f is continuous on X

Let $G^* \subset Y$ be any open set

If $x \in f^{-1}(G^*)$ be any point

 $\Rightarrow f(x) \in G^*$

Since G^* is open set

 \Rightarrow f(x) is an interior point of G^*

$$\Rightarrow \exists \ \varepsilon > 0 \text{ s.t. } B_{\varepsilon}(f(x)) \subseteq G^*$$

Since f is continuous

$$\therefore \exists \delta > 0$$
, s.t. $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$

$$\Rightarrow B_{\delta}(x) \subseteq f^{-1}(G^*)$$

 \Rightarrow x is an interior point of $f^{-1}(G^*)$

 $\Rightarrow f^{-1}(G^*)$ is an open set in X

Conversly, we have $f^{-1}(G^*) \subset X$ is open, $\forall^{open} G^* \subset Y$

Let $x \in X$ s.t. $x \in f^{-1}(G^*)$

Since $f^{-1}(G^*)$ is an open set in X

 \Rightarrow x is an interior point of $f^{-1}(G^*)$

Hence, $\exists \delta > 0$, s.t. $B_{\delta}(x) \subseteq f^{-1}(G^*)$

$$\Rightarrow f(B_{\delta}(x)) \subseteq G^*$$

For $\varepsilon > 0$,

$$\Rightarrow f\big(B_\delta(x)\big)\subseteq B_\varepsilon\big(f(x)\big)\subseteq G^*$$

 \Rightarrow f is continuous on X

Theorem (5.2): A function $f: X \to Y$ is continuous iff the inverse image of each closed set in Y is closed in X.

Proof:

Suppose that f is continuous on X

 \therefore The inverse image of each open set in Y is open in X

Let $F^* \subset Y$ be any closed set

 $\Rightarrow F^{*^c}$ is open set in Y

$$\Rightarrow f^{-1}(F^{*^c}) = (f^{-1}(F^*))^c$$
 is open

$$\Rightarrow f^{-1}(F^*)$$
 is closed in X

Conversely, Let the inverse image of each closed set in Y is closed in X.

Let $G^* \subset Y$ be any open set

 $\Rightarrow G^{*^c}$ is closed set in Y

$$\Rightarrow f^{-1}(G^{*^c}) = (f^{-1}(G^*))^c$$
 is closed in X

$$\Rightarrow f^{-1}(G^*)$$
 is open in X

 \therefore The inverse image of each open set in Y is open in X

 $\Rightarrow f$ is continuous

Theorem (5.3): A function $f: X \to Y$ is continuous iff $f(\overline{E}) \subset \overline{f(E)}$, $\forall E \subset X$.

Proof:

Suppose that f is continuous on X

$$f(E) \subset \overline{f(E)}$$
, $\forall E \subset X$ and $\overline{f(E)}$ closed

$$\Rightarrow E \subset f^{-1}(\overline{f(E)})$$
 closed

 \therefore The inverse image of each closed set in Y is closed in X

$$\Rightarrow \overline{E} \subset \overline{f^{-1}(\overline{f(E)})} = f^{-1}(\overline{f(E)})$$

$$\Rightarrow \bar{E} \subset f^{-1}(\overline{f(E)})$$

$$\Rightarrow f(\overline{E}) \subset \overline{f(E)}$$

Conversely, suppose that $f(\overline{E}) \subset \overline{f(E)}$, $\forall E \subset X$

Let $F^* \subset Y$ be any closed set

Let
$$F = f^{-1}(F^*)$$

We are given $f(\overline{F}) \subset \overline{f(F)} = \overline{f(f^{-1}(F^*))} = \overline{F^*} = F^* = f(F)$

$$\Rightarrow f(\overline{F}) \subset f(F) \text{ but } F \subset \overline{F} \Rightarrow f(F) \subset f(\overline{F})$$

$$\Rightarrow f(\overline{F}) = f(F)$$

$$\Rightarrow f^{-1}(f(\overline{F})) = f^{-1}(f(F))$$

$$\Rightarrow \overline{F} = F = f^{-1}(F^*)$$

$$\Rightarrow f^{-1}(F^*)$$
 is closed in X

Since the inverse image of each closed set in Y is closed in X

 \Rightarrow f is continuous

Theorem (5.4): If $f: X \to Y$ and $g: Y \to Z$ are continuous functions on X and Y respectively, Then $g \circ f: X \to Z$ is continuous on X.

Solution:

Let $G^{**} \subset Z$ be any open set

Since g continuous on Y

$$\Rightarrow g^{-1}(G^{**})$$
 is open in Y

Since f continuous on X

$$\Rightarrow f^{-1}(g^{-1}(G^{**}))$$
 is open in X

$$\Rightarrow (f^{-1} \circ g^{-1})(G^{**})$$
 is open in X

$$\Rightarrow (g \circ f)^{-1}(G^{**})$$
 is open in X

$$\Rightarrow$$
 $(g \circ f)$ is continuous on X
