12th Lecture

Remark (4.1): If X is compact, then we say that (X, τ) is compact topological space.

Example (4.3): If (X, τ) is the indiscrete topological space. Then X is compact.

Theorem (4.2): (Heine – Borel Theorem) نظریة هاین - بوریل

A subset of *R* is compact iff it is closed and bounded.

Remark (4.2): Heine – Borel Theorem does not true in the topological space.

Theorem (4.3): Every closed subset of a compact topological space (X, τ) is compact.

Proof: Let $E \subset X$ be closed

Let $\{G_{\alpha}\}_{{\alpha}\in{\Lambda}}$ be an open cover of $E \Rightarrow E \subset \bigcup_{{\alpha}\in{\Lambda}} G_{\alpha}$

Since E closed $\Rightarrow E^c$ open and

Since
$$E \cup E^c = X \implies E \cup E^c \subset (\bigcup_{\alpha \in \Lambda} G_\alpha) \cup E^c$$

$$\Rightarrow X \subset \bigcup_{\alpha \in A} (G_\alpha \cup E^c)$$

 $\Rightarrow \{G_{\alpha} \cup E^{c}\}_{\alpha \in \Lambda}$ is an open cover of X (compact)

$$\Rightarrow X \subset \bigcup_{i=1}^n G_{\alpha_i} \cup E^c$$

We have $E \subset X$

$$\Rightarrow E \subset \bigcup_{i=1}^n G_{\alpha_i} \cup E^c \Rightarrow E \subset \bigcup_{i=1}^n G_{\alpha_i} \text{ because } E \cap E^c = \emptyset$$

 \Rightarrow *E* is compact.

Definition (4.3): (Finite Intersection Property (F.I.P.)) خاصية التقاطع المنتهي We say that a family of subsets of X in (X, τ) satisfies the **finite intersection** property (F.I.P.) iff any finite subfamily of it has a nonempty intersection.

In other words:

The family $\{E_{\alpha}\}_{{\alpha}\in \Lambda}$ satisfies F.I.P. if $\bigcap_{i=1}^n E_{\alpha_i} \neq \emptyset$ for the subfamily $\{E_{\alpha_i}\}_{i=1}^n$.

Examples (4.4):

- (1) The family $\left\{\left(0,\frac{1}{n}\right)\right\}_{n\in\mathbb{N}}$ satisfies F.I.P. because $\bigcap_{i=1}^{n}(0,\frac{1}{n})\neq\emptyset$ while $\bigcap_{n\in\mathbb{N}}(0,\frac{1}{n})=\emptyset$.
- (2) The family $\{I_n\}_{n\in \mathbb{Z}}$ where $I_n=(-\infty,n]$ of closed sets satisfies the F.I.P. because $\bigcap_{n\in\{-10,-9,\dots,0,1,2,\dots,N\}}(-\infty,n]=(-\infty,-10]\neq\emptyset$ while $\bigcap_{n\in \mathbb{Z}}(-\infty,n]=(-\infty,-\infty)=\emptyset$.

Theorem (4.4): If (X, τ) is a compact topological space. Then every family of <u>closed</u> sets in X satisfying the F.I.P. has a nonempty intersection.

Proof: Let (X, τ) be a compact

Let $\{F_{\alpha}\}_{{\alpha}\in\Lambda}$ be a family of closed sets in X satisfying F.I.P. (i.e. $\bigcap_{i=1}^n F_{\alpha_i} \neq \emptyset$).

We need to prove that $\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \emptyset$

Assume that $\bigcap_{\alpha \in \Lambda} F_{\alpha} = \emptyset$

$$\Rightarrow \emptyset^c = (\bigcap_{\alpha \in \Lambda} F_\alpha)^c \Rightarrow X = \bigcup_{\alpha \in \Lambda} F_\alpha^c$$

Since F_{α}^{c} is open $\forall \alpha \in \Lambda$

- $\Rightarrow \{F_{\alpha}^{c}\}_{\alpha \in \Lambda}$ is an open cover of X (X compact)
- $\Rightarrow \{F_{\alpha_i}^c\}_{i=1}^n$ is a finite subcover of X

$$\Rightarrow X = \bigcup_{i=1}^{n} F_{\alpha_i}^c \Rightarrow X^c = \left(\bigcup_{i=1}^{n} F_{\alpha_i}^c\right)^c$$

$$\Rightarrow \emptyset = \bigcap_{i=1}^{n} F_{\alpha_i} \Rightarrow \text{Contradiction}$$
Hence
$$\bigcap_{\alpha \in A} F_{\alpha} \neq \emptyset$$

Theorem (4.5): If a family of closed sets in (X, τ) satisfying the F.I.P. has a nonempty intersection. Then (X, τ) is compact.

Proof: Let (X, τ) be a topological space

Let $\{F_{\alpha}\}_{{\alpha}\in \Lambda}$ be a family of closed sets in (X,τ) satisfying F.I.P. and $\bigcap_{{\alpha}\in \Lambda}F_{\alpha}\neq\emptyset$

We need to prove that (X, τ) is compact

Assume that (X, τ) is not compact

 $\Rightarrow \exists$ open cover of X which has no finite subcover of X

$$\Rightarrow X = \bigcup_{\alpha \in \Lambda} G_{\alpha}$$
 but $X \neq \bigcup_{i=1}^{n} G_{\alpha_i}$

$$\Rightarrow X^c = (\bigcup_{\alpha \in \Lambda} G_{\alpha})^c \text{ but } X^c \neq (\bigcup_{i=1}^n G_{\alpha_i})^c$$

$$\Rightarrow \bigcap_{\alpha \in \Lambda} G_{\alpha}^{c} = \emptyset \text{ but } \bigcap_{i=1}^{n} G_{\alpha_{i}}^{c} \neq \emptyset$$

- \Rightarrow The family of $\{G_{\alpha}^{c}\}_{\alpha\in\Lambda}$ of closed sets in X satisfies F.I.P. but $\bigcap_{\alpha\in\Lambda}G_{\alpha}^{c}=\emptyset$
- \Rightarrow Contradiction \Rightarrow (X, τ) is compact.

Definition (4.4): (Sequentially Compactness) التراص التتابعي

We say that a subset E of a topological space (X, τ) is **sequentially compact** iff every sequence of E contains a subsequence converges to a point in E.

Symbolically:

 $(E \subset X \text{ is sequentially compact}) \Leftrightarrow$

$$(\forall^{\text{sequence}} \{a_n\}_{n \in \mathbb{N}} \text{ in } E, \exists^{\text{subsequence}} \{a_{n_k}\} \text{ converge to } x \in E)$$

Examples (4.5): Let E=(0,1) is in (R,τ) usual topology on R, E is not sequentially compact because $\{a_n\}_{n\in\mathbb{N}}=\left\{\frac{1}{n+1}\right\}_{n\in\mathbb{N}}$ is a sequence in E, $0<\frac{1}{n+1}<$

1, while every subsequence of $\{a_n\}_{n\in\mathbb{N}}$ converges to $0\notin E$.

For example: The subsequence " $\left\{\frac{1}{(2n)^2}\right\}_{n\in\mathbb{N}}$ " converges to $0\notin E$.

.....

Definition (4.5): (Countably Compactness) التراص العّدي

We say that a subset E of a topological space (X, τ) is **countably compact** iff every infinite subset $A \subset E$ has a limit point x in E.

Symbolically:

 $(E \subset X \text{ is countably compact}) \Leftrightarrow (\forall^{\text{infinite}} A \subset E, A \text{ has a limit point } x \in E)$

Examples (4.6): The sets E = (0,1], E = (0,1), E = [0,1) are not countably compact in (R, τ) .

Solution: Take E = (0,1]

Let
$$A = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots, \frac{n}{n+1}, \frac{n+1}{n+2}, \dots\} \subset E$$

$$d(A) = \{1\}$$
 and $E = (0,1]$

Now
$$A = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n+1}\} \subset E$$

 $d(A) = 0 \land 0 \notin E$, Then E is not countably compact

Now,
$$E = (0,1]$$

Let $A = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$, We have $A \subset E$ and infinite

The limit of A is $0 \notin E$,

 \therefore E is not countably compact

Now,
$$E = [0,1)$$

$$d(A) = 1 \land 1 \notin E$$

 \therefore *E* is not countably compact.