Theorem (5.5): The continuous image of a compact set is compact.

Proof:

Let $f: X \to Y$ be a continuous function and let $E \subset X$ be compact

We need to show that $E^* = f(E)$ is compact

Let $\{G_{\alpha}^*\}$ be an open cover of $f(E) = E^*$

$$\Rightarrow E^* \subset \bigcup_{\alpha \in A} G_{\alpha}^*$$

$$\Rightarrow f(E) \subset \underset{\alpha \in \varLambda}{\bigcup} G_{\alpha}^*$$

$$\Rightarrow E \subset f^{-1}(\bigcup_{\alpha \in \Lambda} G_{\alpha}^*)$$

$$\Rightarrow E \subset \bigcup_{\alpha \in \Lambda} f^{-1}(G_{\alpha}^*)$$

Since $f^{-1}(G_{\alpha}^*)$ is open $\forall \alpha \in \Lambda$

 $\Rightarrow \{f^{-1}(G_{\alpha}^*)\}_{\alpha \in \Lambda}$ is an open cover of E (compact)

$$\Rightarrow E \subset \bigcup_{i=1}^n f^{-1} \bigl(G_{\alpha_i}^* \bigr)$$

$$\Rightarrow E \subset f^{-1}(\bigcup_{i=1}^n G_{\alpha_i}^*)$$

$$\Rightarrow f(E) \subset \bigcup_{i=1}^n G_{\alpha_i}^*$$

$$\Rightarrow E^* \subset \bigcup_{i=1}^n G_{\alpha_i}^*$$

 $\Rightarrow E^*$ is compact

Definition (5.2): (Bounded Function) الدالة المقيدة

The function $f: X \to R$ is called **bounded** if $\exists M > 0$ such that $|f(x)| \le M$, $\forall x \in X$.

Example (5.5):

Determine whether the function $f: R \to R$ defined by f(x) = sin(x) is bounded or not.

Solution: Since $|sin(x)| \le 1$, $\forall x \in R$

 \therefore f is bounded function.

Theorem (5.6): Let X be a compact space and $f: X \to R$ be a continuous function, then f is bounded.

Proof:

Since X is compact and since f is continuous function

 \Rightarrow f(X) is compact in R

 \Rightarrow f(X) is bounded. (By Heine – Borel Theorem)

Definition (5.3):

Let $f: X \to R$, then we say that x_0 is a **maximum** of f if $f(x_0) \ge f(x)$, $\forall x \in X$, and y_0 is a **minimum** of f if $f(y_0) \le f(x)$, $\forall x \in X$.

Example (5.6): Let $f:[0,2] \to R$, defined by $f(x) = x^2$, find the maximum and minimum of f.

Solution:

Since $f(2) = 2^2 = 4 \ge f(x), \forall x \in [0,2]$

 $\Rightarrow x = 2$ is the maximum of f

Since $f(0) = 0^2 = 0 \le f(x), \forall x \in [0,2]$

 $\Rightarrow x = 0$ is the minimum of f

Theorem (5.7): Let $f: X \to R$ be a continuous function and X is a compact, then $\exists x_0, y_0 \in X$ such that $f(y_0) \le f(x) < f(x_0)$.

Definition (5.4): (Uniform Continuous) الاستمرارية المنتظمة

Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is **uniformly** continuous if $\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0$ such that

$$\forall x, x_0 \in X, \text{ if } d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \varepsilon.$$

Example (5.7): Show that the function f(x) = x is uniformly continuous in (R, d).

Solution: Let $\varepsilon > 0$, $\exists \delta > 0$, s.t.

$$d(x,x_0) = |x - x_0| < \delta$$

$$\Rightarrow d(f(x), f(x_0)) = |f(x) - f(x_0)|$$

$$= |x - x_0| < \delta$$

Since $\varepsilon = \delta$

 \Rightarrow f is uniformly continuous function.

Example (5.8): Is the function $f(x) = \frac{x^2+1}{2}$ uniformly continuous in (R, d) or not?

Solution:

Let $\varepsilon > 0$, $\exists \delta > 0$, s.t.

$$d(x,x_0) = |x - x_0| < \delta$$

$$\Rightarrow d(f(x),f(x_0)) = |f(x) - f(x_0)|$$

$$= \left| \frac{x^2 + 1}{2} - \frac{x_0^2 + 1}{2} \right|$$

$$= \left| \frac{x^2 + 1 - x_0^2 - 1}{2} \right|$$

$$= \left| \frac{x^2 - x_0^2}{2} \right|$$

$$= \left| \frac{(x + x_0)(x - x_0)}{2} \right|$$

$$= \frac{1}{2} |x + x_0 + x_0 - x_0| |x - x_0|$$

$$< \frac{\delta}{2} |x - x_0 + 2x_0| < \frac{\delta}{2} (\delta + 2|x_0|)$$

Since
$$\varepsilon = \frac{\delta}{2}(\delta + 2|x_0|)$$

 \Rightarrow f is not uniformly continuous function.

Example (5.9): Is the function $f(x) = x^2$ uniformly continuous in (R, d) or not?

Solution:

Let
$$\varepsilon > 0$$
, $\exists \delta > 0$, s.t.

$$d(x, x_0) = |x - x_0| < \delta$$

$$\Rightarrow d(f(x), f(x_0)) = |f(x) - f(x_0)|$$

$$= |x^2 - x_0^2|$$

$$= |(x + x_0)(x - x_0)|$$

$$= |x + x_0||x - x_0|$$

$$= \delta|x - x_0 + x_0 + x_0|$$

$$< \delta|x - x_0 + 2x_0| < \delta(\delta + 2|x_0|)$$

Since $\varepsilon = \delta(\delta + 2|x_0|)$

 \Rightarrow f is not uniformly continuous function.

Example (5.10): Show that f(x) = c, (c is constant) uniformly continuous in (R, d).

Solution:

Let
$$\varepsilon > 0$$
, $\exists \ \delta > 0$, s.t.

$$d(x, x_0) = |x - x_0| < \delta$$

$$\Rightarrow d(f(x), f(x_0)) = |f(x) - f(x_0)|$$

$$= |c - c| = 0 < \delta$$

Since $\varepsilon = \delta$

 \Rightarrow f is uniformly continuous function.

Theorem (5.8): Every continuous function in a compact space is uniformly continuous.
