13th Lecture

Example (4.7): If E = [a, b] is a subset in (R, τ) . Then E is countably compact.

Solution: Let $A \subset E$ be infinite

$$\Rightarrow A \subset [a, b]$$

Since E is closed and bounded

- \Rightarrow A is bounded
- \Rightarrow sup A exists point $x = \sup A$

(Every bounded subset of R has a limit point in R)

 \Rightarrow A has a limit point $x = \sup A$

$$A \subset E \Rightarrow d(A) \subset d(E) = E$$

- $\Rightarrow d(A) \subset E \Rightarrow x \in E$
- $\Rightarrow \forall^{infinite}$ subset A of E has a limit point $x \in E$
- \Rightarrow E is countably compact

Theorem (4.6): Every compact space is countably compact.

Proof: Let (X, τ) be a compact space

Let $E \subset X$ be any infinite subset of X

Assume that *E* has no limit point in *X*

$$\Rightarrow \forall x \in X, x \notin d(E)$$

$$\Rightarrow \ \forall \ x \in X, \, \exists^{open} \ G_x \ni x; \, (G_x \cap E) \backslash \{x\} = \emptyset$$

$$\Rightarrow \ \forall \ x \in X, \, \exists^{open} \ G_x \ni x; \, (G_x \cap E) = \{x\}$$

$$\Rightarrow$$
 $G_x \cap E$ contains are point (at most) x

$$\Rightarrow \{G_x\}_{x \in X}$$
 is an open cover for X (because $X = \bigcup_{x \in X} G_x$)

$$\Rightarrow X = \bigcup_{i=1}^n G_{x_i}$$

$$\Rightarrow E \cap X = E \cap (\bigcup_{i=1}^n G_{x_i})$$

$$\Rightarrow E = \bigcup_{i=1}^{n} (E \cap G_{x_i})$$

$$\Rightarrow E = \bigcup_{i=1}^{n} (\{x_i\})$$

$$\Rightarrow E = \{x_1, x_2, x_3, \dots, x_n\}$$

- \Rightarrow E is finite
- ⇒ Contradiction to our assumption
- \Rightarrow E has a limit point in X
- \Rightarrow (*X*, τ) countably compact

Theorem (4.7): Every sequentially compact space is countably compact.

Proof:

Let (X, τ) be a sequentially compact topological space and

Let $\emptyset \neq A \subset X$ be infinite subset of X

$$\Rightarrow \exists \{a_n\} = \{a_1, a_2, ...\} \text{ in } A$$

Since *X* is sequentially compact

 \Rightarrow \exists subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that

 $\{a_{n_k}\}$ converges to element $p \in X$

Now, by definition of convergent sequence, every open set contain p contains infinite number of elements of $\{a_{n_k}\}$

 $\forall^{open} \ G \ni p$ (because the element of sequence is different)

Then

Every open set contain p contains at the infinite number of element of A

Thus $p \in X$ is a limit point of $A \Rightarrow A$ is countably compact.

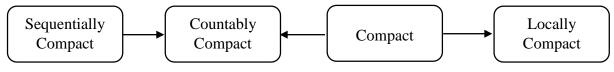
.....

Definition (4.6): (Locally Compactness) التراص المحلي

We say that a topological space (X, τ) is **locally compact** iff every point $x \in X$ is contained in a compact neighborhood (nbhd).

Examples (4.8): The usual topological space (R, τ) is locally compact. Because $\forall x \in R$ we can find a compact nbhd say $[x - \varepsilon, x + \varepsilon] \ni X$.

Note (4.1):



Exercises (4.1): (Homework)

- (1) Prove that $E = [0, \infty)$ is compact in (R, τ) .
- (2) If $X \neq \emptyset$ and $\tau = \{\emptyset, G \subset X : G^c \text{ is finite}\}$ prove or disprove that (X, τ) is compact.
- (3) Prove or disprove that a subset of a compact set is compact.
- (4) Every finite subset of (X, τ) is sequentially compact.
- (5) Every compact space is locally compact.
