Corollary (5.1): Let $f:[a,b] \to R$ is continuous function, then f is uniformly continuous.

Example (5.11): Show that the function $f(x) = x^2$ is uniformly continuous in [-M, M].

Solution: Let $\varepsilon > 0$, $\exists \delta > 0$, s.t.

$$d(x, x_0) = |x - x_0| < \delta$$

$$\Rightarrow d(f(x), f(x_0)) = |f(x) - f(x_0)|$$

$$= |x^2 - x_0^2|$$

$$= |(x + x_0)(x - x_0)|$$

$$= |x + x_0||x - x_0|$$

$$\leq \delta(|x| + |x_0|)$$

$$\leq 2M\delta$$

Since $\varepsilon = 2M\delta$ \Rightarrow f is uniformly continuous function.

Theorem (5.9): Every uniformly continuous function is continuous.

Proof:

Let $f: X \to Y$ is uniformly continuous then

 $\Rightarrow \forall \varepsilon > 0, \exists \delta > 0 \text{ such that } \forall x, x_0 \in X,$

if
$$d_X(x,x_0) < \delta \implies d_Y(f(x),f(x_0)) < \varepsilon$$
.

- \Rightarrow f is continuous at each $x_0 \in X$
- \Rightarrow f is continuous on X

Remark (5.2): The converse of the above theorem is not true as shown in the following example.

Example (5.12): Let $f:(0,1) \to R$, defined by $f(x) = \frac{1}{x}$, determine wether f is uniformly continuous or not.

Solution:

Let
$$\varepsilon > 0$$
, $\exists \delta > 0$, s.t.

$$d(x, x_0) = |x - x_0| < \delta \text{, set } x_0 = \frac{x}{2}$$

$$\Rightarrow d(f(x), f(x_0)) = |f(x) - f(x_0)|$$

$$= \left| \frac{1}{x} - \frac{1}{x_0} \right|$$

$$= \left| \frac{1}{x} - \frac{2}{x} \right|$$

$$= \left| \frac{1}{x} \right| \ge 1 \text{, } \forall x \in (0, 1)$$

 \Rightarrow f is continuous but it is not uniformly continuous function.

Chapter Six

متتابعات ومتسلسلات الدوال

Sequence and Series Functions

متتابعات الدوال (Sequence of Functions) متتابعات الدوال

Let $S \subseteq R$ and $F = \{f : f : S \to R\}$. Let $\{f : f : S \to R\}$ be a **sequence of functions** in S. Then $\{f : f : S \to R\}$ is a **sequence** in $\{f : f : S \to R\}$.

التقارب النقطى Definition (6.2): (Pointwise Convergence)

We say that the sequence $\langle f_n \rangle$ convergent pointwise to f if $\forall x \in S$ the sequence of numbers $\langle f_n(x) \rangle$ converges to f(x).

i.e.
$$\forall \varepsilon > 0, \exists k \in \mathbb{N}, k = k(\varepsilon, x)$$
 such that $|f_n(x) - f(x)| < \varepsilon, \forall n > k$ i.e. $\lim_{n \to \infty} f_n = f$ pointwise iff $\lim_{n \to \infty} f_n(x) = f(x), \forall x \in X$

Example (6.1): Let $f_n: [0,1] \to R$, defined by $f_n(x) = e^{\frac{x}{n}}$, $\forall x \in [0,1]$, $\forall n \in N$, show that the sequence of function $< f_n >$ is converge pointwise.

Solution:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} e^{\frac{x}{n}}$$

$$= e^0 = 1 \quad \text{for } x \in [0,1]$$

Thus $f_n(x)$ converges pointwise to f(x) = 1

Example (6.2): Let $f_n: [0,1] \to R$, defined by $f_n(x) = x^n$, $\forall x \in [0,1]$, $\forall n \in N$, show that the sequence of function $< f_n >$ is converge pointwise on [0,1].

Solution:

Since

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} x^n = \begin{cases} \lim_{n\to\infty} x^n = 0 & if \ x \in [0,1) \\ \lim_{n\to\infty} 1^n = 1 & if \quad x = 1 \end{cases}$$

Thus $f_n(x)$ converges pointwise to $g(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x \in [0,1) \end{cases}$

Example (6.3): Let $f_n: [-1,1] \to R$, defined by $f_n(x) = x^n$, $\forall x \in [-1,1]$, $\forall n \in \mathbb{N}$, determine whether the sequence of functions $\langle f_n \rangle$ is converge pointwise on [-1,1] or not.

Solution:

Since

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \begin{cases} \lim_{n \to \infty} 1^n = 1 & \text{if } x = 1 \\ \lim_{n \to \infty} x^n = 0 & \text{if } x \in (-1,1) \\ \lim_{n \to \infty} (-1)^n = \text{indetermine} & \text{if } x = -1 \end{cases}$$

 $\Rightarrow f_n(x)$ does not converge pointwise.

Example (6.4): Let $< f_n >$ be a sequence of function on R defined by

$$f_n(x) = \frac{x}{n}, \forall x \in R, \forall n \in N$$

Solution:

Since
$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{x}{n} = 0$$
, $\forall x \in R$

Thus $f_n(x)$ converges pointwise to f(x) = 0

Example (6.5): Let $< f_n >$ be a sequence of function on R defined by

$$f_n(x) = \frac{nx}{1+nx}, \forall x \in [0,1], \forall n \in \mathbb{N}$$

Solution:

Since
$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{nx}{1+nx} = 1$$
, $\forall x \in [0,1]$

Thus $f_n(x)$ converges pointwise to f(x) = 1.