Chapter Four تکامل لیبیك Lebesgue Integral

Let Ω be a measurable set in R. The **Lebesgue partition** P of an interval Ω is a family of a finite number of measurable subsets of Ω , $P = \{A_i : i = 1, ..., n\}$, such that

- (1) A_i is measurable set in Ω , $\forall i = 1, 2, ..., n$.
- (2) $A_i \cap A_j = \emptyset$, $\forall i \neq j$.
- $(3) \cup_{i=1}^n A_i = \Omega.$

The sets A_i , $i=1,2,\ldots,n$ are called **components** of P.

مجاميع ليبيك العليا والسفلى (Lower and Upper Lebesgue Sums) مجاميع ليبيك العليا والسفلى

Let f be a bounded function on Ω , and P a partition of Ω

given by $P = \{A_i : i = 1, 2, ..., n\}$. We denote by m_i and M_i the quantities

$$m_i = \inf\{f(x): x \in A_i\}$$
 and $M_i = \sup\{f(x): x \in A_i\}.$

Then the corresponding lower and upper Lebesgue sums for f on Ω are

$$L(f, P) = \sum_{i=1}^{n} m_i \, \mu(A_i)$$
 and $U(f, P) = \sum_{i=1}^{n} M_i \, \mu(A_i)$

Definition (4.3): (Refinement)

Let $P = \{A_i : i = 1, 2, ..., n\}$ and $P' = \{B_j : j = 1, 2, ..., m\}$ are Lebesgue partitions of Ω , P' is a **refinement** of P, if $\forall j$, $\exists i$, such that $B_j \subseteq A_i$.

قابلية التكامل الليبيكي (Lebesgue Integrable) قابلية التكامل الليبيكي

Let f be a bounded function on a measurable set Ω . Then we define:

- The **lower Lebesgue integral of** f **on** Ω **to be** $\underline{\mathcal{L}} \int_{\Omega} f = \sup_{P} L(f, P)$,
- The upper Lebesgue integral of f on Ω to be $\overline{\mathcal{L}} \int_{\Omega} f = \inf_{P} U(f, P)$,

Where *P* denotes Lebesgue partition of Ω .

Further, if the lower and upper integrals are equal, we say that f is **Lebesgue-integrable** on Ω , $\int_{\Omega} f$ or $\mathcal{L} \int_{\Omega} f$ to be their common value; that is

$$\mathcal{L}\int_{\Omega} f = \overline{\mathcal{L}}\int_{\Omega} f = \overline{\mathcal{L}}\int_{\Omega} f$$

Theorem (4.1): If $f:[a,b] \to R$ is Riemann-integrable then f is Lebesgue-integrable and

$$\mathcal{L}\int_{[a,b]} f = \mathcal{R}\int_{a}^{b} f$$

Proof:

Since [a, b] is a measurable set and every Riemann partition of [a, b] is Lebesgue partition of [a, b]

Hence,

$$\underline{\mathcal{R}}(f) \subseteq \underline{\mathcal{L}}(f) \text{ and } \overline{\mathcal{R}}(f) \subseteq \overline{\mathcal{L}}(f)
\Rightarrow \sup\{\underline{\mathcal{R}}(f)\} \le \sup\{\underline{\mathcal{L}}(f)\}
\Rightarrow \underline{\mathcal{R}} \int f \le \underline{\mathcal{L}} \int f \qquad \dots (1)$$

Also,

$$inf\{\overline{\mathcal{R}}(f)\} \le inf\{\overline{\mathcal{L}}(f)\}$$

$$\Rightarrow \overline{\mathcal{R}} \int f \le \overline{\mathcal{L}} \int f \qquad \dots (2)$$

From (1) and (2), we get

$$\underline{\mathcal{R}} \int f \le \underline{\mathcal{L}} \int f \le \overline{\mathcal{L}} \int f \le \overline{\mathcal{R}} \int f \qquad \dots (3)$$

Since *f* is Riemann-integrable we have

$$\mathcal{R} \int f = \underline{\mathcal{R}} \int f = \overline{\mathcal{R}} \int f$$

Then from (3), we get

$$\mathcal{L} \int f = \underline{\mathcal{L}} \int f = \overline{\mathcal{L}} \int f$$

 $\therefore f \text{ is Lebesgue -- integrable and } \mathcal{L} \int_{[a,b]} f = \mathcal{R} \int_{a}^{b} f$

Note (4.1): The converse of the above theorem is not true, i.e.

If f is Lebesgue-integrable \Rightarrow f is Riemann-integrable.

As shown in the following example.

Example (4.1): Let f be a function defined on [0,1] by

$$f(x) = \begin{cases} 1, & 0 \le x \le 1, & x \text{ rational} \\ 0, & 0 \le x \le 1, & x \text{ irrational} \end{cases}$$

Prove that f is Lebesgue-integrable but it is not Riemann-integrable.

Solution:

Let $P = \{A_1, A_2\}$ be a measurable partition of [0, 1]

Where

$$A_1 = Q \subset [0,1]$$

$$A_2 = Q' \subset [0,1]$$

$$L(f, P) = \sum_{i=1}^{2} m_i \, \mu(A_i)$$
$$= m_1 \, \mu(A_1) + m_2 \, \mu(A_2)$$
$$= 1 \times 0 + 0 \times 1 = 0$$

$$\Rightarrow \ \underline{\mathcal{L}} \int_{[0,1]} f = 0$$

and

$$U(f, P) = \sum_{i=1}^{2} M_i \, \mu(A_i)$$
$$= M_1 \, \mu(A_1) + M_2 \, \mu(A_2)$$
$$= 1 \times 0 + 0 \times 1 = 0$$

$$\Rightarrow \ \overline{\mathcal{L}} \int_{[0,1]} f = 0$$

Since
$$\underline{\mathcal{L}} \int_{[0,1]} f = \overline{\mathcal{L}} \int_{[0,1]} f$$

 \Rightarrow f is Lebesgue-integrable on [0,1].

Now, to prove that f is not Riemann-integrable

Let $P = \{[x_0, x_1], [x_1, x_2], \dots, [x_{i-1}, x_i], \dots, [x_{n-1}, x_n]\}$ be any partition of [0,1].

Then

$$L(f,P) = \sum_{i=1}^{n} m_i \delta x_i$$
$$= \sum_{i=1}^{n} 0 \times \delta x_i = 0$$
$$\Rightarrow \int_0^1 f = 0$$

and

$$U(f,P) = \sum_{i=1}^{n} M_i \delta x_i$$
$$= \sum_{i=1}^{n} 1 \times \delta x_i$$
$$= \sum_{i=1}^{n} \delta x_i = 1$$
$$\Rightarrow \int_0^{\overline{1}} f = 1$$

Since $\int_{\underline{0}}^{1} f \neq \int_{0}^{\overline{1}} f$

 \Rightarrow f is <u>not</u> Riemann-integrable on [0,1].

Theorem (4.2): (Lebesgue's Criterion for integrability)

Let f be a bounded function on a measurable bounded Ω on R. Then f is Lebesgue-integrable on Ω if and only if for each positive number ε , there is a Lebesgue partition P of Ω for which $U(f,P)-L(f,P)<\varepsilon$.

Theorem (4.3): Suppose that $f: \Omega \to R$ is a bounded Lebesgue-integrable on a bounded measurable set Ω . We set

$$m = \inf_{x \in \Omega} f(x), \qquad M = \sup_{x \in \Omega} f(x)$$

Then $m \mu(\Omega) \le \int_{\Omega} f(x) dx \le M \mu(\Omega)$.

Theorem (4.4): If f and g are Lebesgue-integrable, then f+g, fg and cf, for every constant c, are Lebesgue-integrable.

Theorem (4.5): Let Ω be a bounded measurable set in R. If $f: \Omega \to R$ is a bounded Lebesgue-integrable on Ω . Then |f| is also Lebesgue-integrable on Ω and

$$\left| \int_{\Omega} f(x) \, dx \right| \leq \int_{\Omega} |f(x)| \, dx.$$

Exercises (4.1): (Homework)

(1) Let Ω be a bounded measurable set on R, and let $f:\Omega \to R$ be a function defined as f(x) = a, $\forall x \in \Omega$, (constant function). Prove that f is Lebesgue-integrable and

$$\int_{\Omega} f \ d\mu = a \, \mu(\Omega).$$

(2) Let $f: [a, b] \to R$ be a function defined as

$$f(x) = \begin{cases} -5, & if \quad x \in [a, b] \cap Q \\ 3, & if \quad x \in [a, b] \cap Q' \end{cases}$$

Show whether f is Riemann-integrable or Lebesgue-integrable.
