15th Lecture

Example (5.2): If $f:(X,\tau) \to (X^*,\tau^*)$ and (X,τ) is a discrete topological space, (X^*,τ^*) any topological space. Then f is continuous on X.

Solution:

f continuous at $a \in X$ iff $\forall^{open}G^* \ni f(a), \exists^{open}G \ni a, f(G) \subset G^*$

Example (5.1): Let $X = \{a, b, c, d, e\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, \text{ and } \{b\}, \{a, b\}, \{a, b\}$

$$X^* = \{x, y, z, u\}, \tau^* = \{\emptyset, \{x\}, \{y\}, \{x, y\}, \{x, y, z\}, X\}.$$

Let $f: X \to X^*$ be defined as follows:

$$f(a) = x, f(b) = f(c) = y, f(d) = z, f(e) = z$$

Determine whether f is continuous at the point a, b, c, d, e

Solution: $a \in X$, f(a) = x

The open sets G^* containing f(a) = x are $\{x\}, \{x, y\}, \{x, y, z\}, X^*$

The open sets G containing a are $\{a\}$, $\{a, b\}$, X

We have
$$f(\{a\}) = \{f(a)\} = \{x\} \subset G^*, \forall G^* \ni f(a)$$

$$\Rightarrow \exists^{open} \ G = \{a\} \ni a, \forall^{open} \ G \ni f(a), f(G) \subset G^*, \forall \ G^* \ni f(a)$$

 \Rightarrow f is continuous at $a \in X$

$$b \in X, f(b) = y$$

The open sets G^* containing f(b) = y are $\{y\}, \{x, y\}, \{x, y, z\}, X^*$

The open sets G containing b are $\{b\}$, $\{a, b\}$, X

We have
$$f(\{b\}) = \{f(b)\} = \{y\} \subset G^*, \forall G^* \ni f(b)$$

$$\Rightarrow \exists^{open} \ G = \{b\} \ni b, \forall^{open} \ G \ni f(b), f(G) \subset G^*, \forall \ G^* \ni f(b)$$

 \Rightarrow f is continuous at $b \in X$

$$c \in X, f(c) = y$$

The open sets G^* containing f(c) = y are $\{y\}, \{x, y\}, \{x, y, z\}, X^*$

The open set G containing c is X

We have
$$f(\{c\}) = \{f(c)\} = \{y\} \subset G^*, \forall G^* \ni f(c)$$

$$\Rightarrow \exists^{open} G = \{c\} \ni c, f(G) \not\subset G^*$$

$$f(x) = \{x, y, z\} \not\subset G^*$$

$$[\forall \ G^* \ni y, \exists \ X \ni c \ , f(x) \not\subset G^*]$$

$$d \in X$$
, $f(d) = z$

The open sets G^* containing f(d) = z are $\{x, y, z\}, X^*$

The open sets G containing d is X

We have
$$f(\{d\}) = \{f(d)\} = \{z\} \subset G^*, \forall G^* \ni f(d)$$

$$\Rightarrow \exists^{open} \ G = \{d\} \ni d, \forall^{open} \ G \ni f(d), f(G) \subset G^*, \forall \ G^* \ni f(d)$$

 \Rightarrow f is continuous at $d \in X$

$$e \in X, f(e) = z$$

The open sets G^* containing f(e) = z are $\{x, y, z\}, X^*$

The open set G containing e is X

We have
$$f(\{e\}) = \{f(e)\} = \{z\} \subset G^*, \forall G^* \ni f(e)$$

$$\Rightarrow \exists^{open} G = \{e\} \ni e, \forall^{open} G \ni f(e), f(G) \subset G^*, \forall G^* \ni f(e)$$

 \Rightarrow f is continuous at $e \in X$

Remark (5.1): If f is continuous at each point $x \in X$. Then we say that f is continuous on X.

Theorem (5.1): (The Fundamental Theorem of Continuity)

If $f:(X,\tau)\to (X^*,\tau^*)$. Then the continuity of f on X is equivalent to each of the following conditions:

- (1) The inerse image of each open set in X^* is open in X.
- (2) The inverse image of each closed set in X^* is closed in X.
- (3) $f(\bar{A}) \subset \overline{f(A)}, \forall A \subset X$.

Proof: Continuity of $f \leftrightarrow f^{-1}(G^*)$ is open in $X, \forall^{open} G^* \subset X^*$

Continuity of $f \leftrightarrow f^{-1}(G^*)$ is closed in X, $\forall^{closed} G^* \subset X^*$

Suppose that f is continuous on X

We need to show that $f^{-1}(G^*)$ is open in X, $\forall^{open} G^* \subset X^*$

Let $G^* \subset X^*$ be any open we have to prove $f^{-1}(G^*)$ is open

Let $x \in f^{-1}(G^*)$ be any point

 $\Rightarrow f(x) \in G^*$, but $G^* \subset X^*$ is given open and $f(x) \in G^*$

Since f is continuous

$$\Rightarrow \forall^{open} \ G^* \ \ni f(x), \exists^{open} \ G \ni x, f(G) \subset G^*$$

$$\Rightarrow f(x) \in f(G) \subset G^* \Rightarrow x \in G \subset f^{-1}(G^*)$$

$$\Rightarrow \forall x \in f^{-1}(G^*), \exists^{open} G \ni x, G \subset f^{-1}(G^*)$$

$$\Rightarrow f^{-1}(G^*)$$
 is open in X

Conversly: Suppose that $f^{-1}(G^*)$ is open in X, $\forall^{open} G^* \subset X^*$

We need to show that f is continuous on X

Let $G^* \subset X^*$ be any open set $\Rightarrow f^{-1}(G^*) \subset X$ is open

But by using the definition of open set we set

$$\forall \ x \in f^{-1}(G^*), \exists^{open} \ G \ni x, x \in G \subset f^{-1}(G^*)$$

$$\Rightarrow \ \forall \ x \in f^{-1}(G^*), \exists^{open} \ G \ni x, f(x) \in f(G) \subset G^* \ \Rightarrow \ f(x) \in f(G) \subset G^*$$

$$\Rightarrow \forall^{open} G^* \subset X^*, \exists^{open} G, f(G) \subset G^* \Rightarrow f \text{ is continuous on } X$$

Now $(1) \leftrightarrow (2)$

Suppose the inverse image of each open set in X^* is open in X

We need to show that the inverse image of each closed set in X^* is closed in X

Let $F^* \subset X^*$ be any closed set

$$\Rightarrow F^{*^c} = X^* - F^*$$
 is open set

$$\Rightarrow f^{-1}(F^{*^c})$$
 is open $\Rightarrow (f^{-1}(F^*))^c \Rightarrow f^{-1}(F^*)$ is closed in X

Conversely: Suppose that the inverse of image of each closed set in X^* is closed in X.

We need to show that the inverse image of each open set in X^* is open in X

$$\Rightarrow f^{-1}(G^{*^c})$$
 is closed in $X \Rightarrow (f^{-1}(G^*))^c$ is closed in X

$$\Rightarrow f^{-1}(G^*)$$
 is open in X

Now we prove $(2) \leftrightarrow (3)$

Suppose that the inverse image of each closed set in X^* is closed in X

We need to show that $f(\bar{A}) \subset \overline{f(A)}$, $\forall A \subset X$

Since f(A) = f(A), $\forall A \subset X$ and $f(A) \subset \overline{f(A)}$ closed

$$\Rightarrow A \subset f^{-1}(\overline{f(A)})$$
 closed

$$\Rightarrow \bar{A} \subset \overline{f^{-1}(\overline{f(A)})} = f^{-1}(\overline{f(A)})$$

$$\Rightarrow \bar{A} \subset f^{-1}\big(\overline{f(A)}\big) \Rightarrow f(\bar{A}) \subset \overline{f(A)}$$

Conversely: suppose that $f(\bar{A}) \subset \overline{f(A)}$, $\forall A \subset X$

We need to show that $f^{-1}(F^*)$ is closed in X, $\forall^{closed} F \subset X^*$

Let $F^* \subset X^*$ be any closed set

We need to prove that $f^{-1}(F^*)$ is closed in X

Let
$$E = f^{-1}(F^*)$$

We are given $f(\overline{E}) \subset \overline{f(E)} = \overline{f(f^{-1}(F^*))} = \overline{F^*} = F^* = f(E)$

$$\Rightarrow f(\bar{E}) \subset f(E)$$
 but $E \subset \bar{E} \Rightarrow f(E) \subset f(\bar{E})$

$$\Rightarrow f(\bar{E}) = f(E)$$

$$\Rightarrow f^{-1}(f(\bar{E})) = f^{-1}(f(E))$$

$$\Rightarrow \overline{E} = E = f^{-1}(F^*) \Rightarrow f^{-1}(F^*)$$
 is closed in X .
