1st Lecture

Chapter One الفضاءات التبولوجية Topological Spaces

Definition (1.1): Let $X \neq \emptyset$ and τ be a family of subsets of X then we say that τ is topology on X (or (X, τ) is a topological space) if:

- (1) \emptyset , $X \in \tau$.
- (2) If $A_i \in \tau$, $\forall i \in \mathbb{N} \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \tau$.

(The union of any number of element of τ belong to τ)

(3) If $A_i \in \tau$, $\forall i = 1, 2, ..., n$ then $\bigcap_{i=1}^n A_i \in \tau$.

(The finite intersection of elements of τ belong to τ)

The sets $A_i \in \tau$ called the open sets of the topological space (X, τ) .

Example (1.1): Let $X \neq \emptyset$, $\tau = \{\emptyset, X\}$. Then τ is a topology on X and (X, τ) is a topological space.

Proof:

- (i) $\emptyset \in \tau$ and $X \in \tau \Rightarrow \emptyset, X \in \tau$
- (ii) Since $\emptyset \cup X = X \cup \emptyset = X \in \tau \implies X \cup \emptyset \in \tau$
- (iii) Since $\emptyset \cap X = X \cap \emptyset = \emptyset \in \tau \implies X \cup \emptyset \in \tau$

Therefore τ is a topology on X.

ضعيفة

Remark (1.1): The topology τ in the above example is called the weak (indiscrete) topology on X.

Example (1.2): Let $X \neq \emptyset$ and $\tau = \{A : A \subset X\}$ then (X, τ) is a topological space.

Proof:

(i) Since $\emptyset \subset X \Rightarrow \emptyset \in \tau \Rightarrow \emptyset, X \in \tau$

Since $X \subset X \implies X \in \tau$

(ii) Let
$$A_i \in \tau$$
, $i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \tau$.

$$\Rightarrow A_i \subset X, i \in \mathbb{N}$$

$$\Rightarrow \bigcup_{i \in \mathbb{N}} A_i \subset X \Rightarrow \bigcup_{i \in \mathbb{N}} A_i \in \tau$$

(iii) If
$$A_i \in \tau$$
, $\forall i = 1, 2, ..., n$

$$\Rightarrow A_i \subset X, \ \forall \ i = 1,2,...,n$$

$$\Rightarrow \bigcap_{i=1}^{n} A_i \subset X \Rightarrow \bigcap_{i=1}^{n} A_i \in \tau$$

Therefore τ is a topology on X.

-----مبعثر ة

Remark (1.2): The topology τ in the above example is called the **discrete** topology on X.

Example (1.3): Let
$$X = \{a, b, c, d\}$$
 and $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$

Determine whether τ is a topology on X or no.

Solution:

- (i) We have \emptyset , $X \in \tau$.
- (ii) We have $\{a\} \cup \{b, c\} = \{a, b, c\} \in \tau$

$${a}\cup{a,b,c} = {a,b,c} \in \tau$$

$$\{b,c\} \cup \{a,b,c\} = \{a,b,c\} \in \tau$$

Therefore the union of any number of element of τ is in τ .

(iii) We have $\{a\} \cap \{b,c\} = \emptyset \in \tau$

$$\{a\}\cap\{a,b,c\}=\{a\}\in\tau$$

$${b,c} \cap {a,b,c} = {b,c} \in \tau$$

Thus the intersection of any number of elements of τ is in τ .

Hence τ is a topology on X.

Example (1.4): Let (X, d) be a metric space then the family of all open subsets of X with respect to (w.r.t.) d forms a topology on X

Proof:

Let $\tau = \{G : G \subset X \text{ is open } w.r.t. d\}$

- (i) Since (X, d) is a metric space
 - \Rightarrow Ø, X are open in X w.r.t. d
 - $\Rightarrow \emptyset, X \in \tau$
- (ii) If $G_i \subset X$ is open w.r.t. $d \ \forall \ i \in \lambda$ but (X, d) is a metric space
 - $\Rightarrow \bigcup_{i \in \lambda} G_i$ is open w.r.t. d
 - $\Rightarrow \bigcup_{i \in \lambda} G_i \in \tau$
- (iii) If $G_i \subset X$ is open w.r.t. $d, \forall 1 \le i \le n$ but (X, d) is a metric space
 - $\Rightarrow \bigcap_{i=1}^n G_i$ is open in X
 - $\Rightarrow \bigcap_{i=1}^n A_i \in \tau$

Hence τ is a topology on X.

لاعتيادي

Remark (1.3): The topology τ in the above example is called the usual topology on X.

Example (1.5): Let $X = \mathbb{N}$ be the set of natural numbers. Let τ be a family of all subsets of \mathbb{N} of the form $\{1,2,...,n\}$ with \emptyset and X. Prove that τ is a topology on X.

Proof:

- (i) We are given \emptyset , $X \in \tau$.
- (ii) Let $A_1 = \{1, 2, ..., n_1\}$ and $A_2 = \{1, 2, ..., n_2\}$ be elements of τ .

We have

$$A_1 \cup A_2 = \{1,2,\ldots,n_1\} \cup \{1,2,\ldots,n_2\} = \begin{cases} \{1,2,\ldots,n_1\}, & if & n_1 \geq n_2 \\ \{1,2,\ldots,n_2\}, & if & n_2 \geq n_1 \end{cases}$$

In both cases we have

$$A_1 \cup A_2 \in \tau$$

In general let $A_i \in \tau$, $\forall i \in \lambda$

We have $\bigcup_{i \in \lambda} A_i = A_j$ where $j = \max_{i \in \lambda} \{i\}$

But
$$A_j \in \tau \implies \bigcup_{i \in \lambda} A_i \in \tau$$

(iii) We have

$$A_1 \cap A_2 = \{1,2,\ldots,n_1\} \cap \{1,2,\ldots,n_2\} = \begin{cases} \{1,2,\ldots,n_1\}, & if & n_1 \leq n_2 \\ \{1,2,\ldots,n_2\}, & if & n_2 \leq n_1 \end{cases}$$

In general let $A_i \in \tau$, $\forall i \in \lambda$

We have $\bigcap_{i=1}^{n} A_i = A_j$ where $j = \min_{i \in \lambda} \{i\}$

But
$$A_j \in \tau \implies \bigcap_{i=1}^n A_i \in \tau$$

Thus (X, τ) is a topological space.

Theorem (1.1): Intersection of a family of topological spaces on a set is a topological space on this set.

Proof:

Let $\tau = \bigcap_{\alpha \in \Lambda} \tau_{\alpha}$, τ_{α} be a topology $\forall \alpha \in \Lambda$

- (1) Since τ_{α} is a topology on X, $\forall \alpha \in \Lambda$ then \emptyset and X are belong to τ_{α} , $\forall \alpha \in \Lambda$. Thus \emptyset and X are belong to $\int_{\alpha \in \Lambda} \tau_{\alpha}$. Thus \emptyset , $X \in \tau$.
- (2) Let $A_{\beta} \in \tau$, $\forall \beta \in \xi \Rightarrow A_{\beta} \in \bigcap_{\alpha \in \Lambda} \tau_{\alpha}$

Thus $A_{\beta} \in \tau_{\alpha}$, $\forall \alpha \in \Lambda$, $\forall \beta \in \xi$

Since τ_{α} is a topology $\forall \alpha \in \Lambda$, then $\bigcup_{\beta \in \xi} A_{\beta} \in \tau_{\alpha}$, $\forall \alpha \in \Lambda$.

Thus
$$\bigcup_{\beta \in \xi} A_{\beta} \in \bigcap_{\alpha \in \Lambda} \tau_{\alpha} \Rightarrow \bigcup_{\beta \in \xi} A_{\beta} \in \tau$$
.

(3) Let
$$B_j \in \tau, \forall j = 1, 2, ..., n \Rightarrow B_j \in \bigcap_{\alpha \in \Lambda} \tau_\alpha, j = 1, 2, ..., n$$

$$\Rightarrow$$
 Thus $B_i \in \tau_\alpha$, $\forall \alpha \in \Lambda$, $\forall j = 1,2,...,n$

$$\Rightarrow \bigcap_{j=1}^n B_j \in \tau_\alpha, \forall \alpha \in \Lambda$$

$$\Rightarrow \bigcap_{j=1}^{n} B_j \in \bigcap_{\alpha \in \Lambda} \tau_{\alpha} \quad \Rightarrow \quad \bigcap_{j=1}^{n} B_j \in \tau$$

(1), (2) and (3) implies that τ is a topology on X.

Exercises (1.1): (Homework)

- (1) Let $X \neq \emptyset$ and τ contains the empty set and all subsets of X whose complement is finite w.r.t. X. Then τ is a topology on X.
- (2) Let $X = \{a, b, c\}$ and $\tau_1 = \{\emptyset, \{a\}, \{b, c\}, X\}, \tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_3 = \{\emptyset, \{a\}, \{b\}, X\}$. Determine which one is represents a topology on X.
