2nd Lecture

Remark (1.4): It not necessary that the union of two topologies on X form a topology on X as in the following example.

.....

Example (1.6): Let $X = \{a, b, c\}$, and let $\tau_1 = \{\emptyset, \{a\}, X\}$ and $\tau_2 = \{\emptyset, \{b\}, X\}$.

Now $\tau_1 \cup \tau_1 = \{\emptyset, \{a\}, \{b\}, X\}$

 $\tau_1 \cup \tau_1$ is not a topology on X , because $\{a\}, \{b\} \in \tau_1 \cup \tau_1$ while

 $\{a\} \cup \{b\} = \{a,b\} \not\in \epsilon \tau_1 \cup \tau_1.$

Definition (1.2): Let (X, τ) be a topological space. If $E \subset X$, we say that the point $x \in X$ is a limit point of E iff

$$\forall$$
 open $G \ni x$; $(G \cap E)\{x\} \neq \emptyset$.

ens N

المشتقة

Definition (1.3): The set of all limit points of E is called the derived set of E, denoted by d(E) or E'.

Example (1.7): Let $X = \{a, b, c, d, e\}$ and

 $\tau = \{\emptyset, \{a\}, \{b, d\}, \{a, b, d\}, \{b, c, d, e\}, X\}$ is a topology on X

If $A = \{a, b, d\}, B = \{a, b, c\}$. Find d(A).

Solution:

 $a \in X$: The open sets containing a are

$${a}, {a, b, d}, X$$

We have

$$(\{a\} \cap A) - \{a\} = (\{a\} \cap \{a, b, d\}) - \{a\}$$
$$= \{a\} - \{a\} = \emptyset$$

$$\Rightarrow a \notin d(A)$$

 $b \in X$: The open sets containing b are

$$\{b,d\},\{a,b,d\},\{b,c,d,e\},X$$

Now
$$(\{b, d\} \cap \{a, b, d\}) - \{b\} = \{b, d\} \setminus \{b\} = \{d\} \neq \emptyset$$

Since $\{b, d\} \subset \{b, c, d\}$ it satisfies the relation

Also $\{b, d\} \subset \{b, c, d, e\}$ hence it satisfies the relation too.

$$\Rightarrow$$
 $b \in d(A)$

 $c \in X$: The open sets containing c are

$$\{b,c,d,e\},X$$

Now
$$(\{b, c, d, e\} \cap \{a, b, d\}) - \{c\} = \{b, d\} \setminus \{c\} = \{b, d\} \neq \emptyset$$

The relation is true for $X \supset \{b, c, d, e\} \Rightarrow c \in d(A)$

 $d \in X$: The open sets containing d are

$$\{b,d\},\{a,b,d\},\{b,c,d,e\},X$$

Now
$$(\{b, d\} \cap A) - \{d\} = \{b, d\} - \{d\} = \{b\} \neq \emptyset$$

The relation is true for the open set $\{a, b, d\}$, $\{b, c, d, e\}$, $X \supset \{b, d\}$

$$\Rightarrow$$
 $d \in d(A)$

 $c \in X$: The open sets containing e are

$$\{b,c,d,e\},X$$

Now
$$(\{b, c, d, e\} \cap \{a, b, d\}) \setminus \{e\} = \{b, d\} - \{e\} = \{b, d\} \neq \emptyset$$

The relation is true for $X \supset \{b, c, d, e\}$

$$\Rightarrow e \in d(A)$$

$$\therefore d(A) = \{b, c, d, e\}$$

Remark (1.5): If one of the open set satisfies the condition of limit point (in above definition) all the open sets containing it satisfy also condition.

Example (1.8): Let (X, τ) be the weak (indiscrete) topological space and $E \subset X$. Find d(E).

Solution:

We have $\tau = \{\emptyset, X\}$

Let $x \in X$ be any point

We have only open set containing x is X

Now $(X \cap E)\{x\} \neq \emptyset$ always except $E = \emptyset \cup E = \{x\}$

$$d(E) = \begin{cases} \emptyset & if \quad E = \emptyset \\ X - \{x\} & if \quad E = \{x\} \\ X & if \quad E = \{x, y\} \end{cases}$$

Theorem (1.2): Let A, B be subsets of a topological space (X, τ) then

- (i) $d(\emptyset) = \emptyset$.
- (ii) $A \subset B \Rightarrow d(A) \subset d(B)$.
- (iii) $x \in d(E) \Rightarrow x \in d(E \{x\}).$
- (iv) $d(A \cup B) = d(A) \cup d(B)$.

Proof:

(i) Since $\forall x \in X, \forall open G \ni x ; (G \cap \emptyset) \setminus \{x\} = \emptyset$ $\Rightarrow x \notin d(\emptyset), \forall x \in X$

$$\Rightarrow d(\emptyset) = \emptyset$$

(ii) We need to show that $d(A) \subset d(B)$

Let $x \in d(A) \Rightarrow x$ is a limit point of A

$$\Rightarrow \forall open G \ni x, (G \cap A) \setminus \{x\} \neq \emptyset$$

Since $A \subset B$

- \Rightarrow x is a limit point of B
- $\Rightarrow x \in d(B)$

Hence $d(A) \subset d(B)$.

(iii) Since

$$((G \cap E) - \{x\}) - \{x\} = ((G \cap E) \cap \{x\}^c) \cap \{x\}^c$$
$$= (G \cap E) \cap (\{x\}^c \cap \{x\}^c)$$
$$= (G \cap E) \cap \{x\}^c$$
$$= (G \cap E) \setminus \{x\}$$

Thus if $x \in d(E) \Rightarrow x \in d(E - \{x\})$

(iv) Since
$$A \subset A \cup B \atop B \subset A \cup B \rbrace \Rightarrow d(A) \subset d(A \cup B) \atop d(B) \subset d(A \cup B) \rbrace$$

 $\Rightarrow d(A) \cup d(B) \subset d(A \cup B) \qquad \dots (1)$

Now we have to prove that $d(A) \cup d(B) \subset d(A \cup B)$

Let $x \notin d(A) \cup d(B)$

$$\Rightarrow x \notin d(A) \land x \notin d(B)$$

 \Rightarrow x is not a limit point of A and x is not a limit point of B

$$\Rightarrow \exists open \ G_1 \ni x \ ; \ (G_1 \cap A) \setminus \{x\} = \emptyset \ \land \exists open \ G_2 \ni x \ ; \ (G_2 \cap B) \setminus \{x\} = \emptyset$$
 Put $G = G_1 \cap G_2$

$$\Rightarrow \exists open \ G \ni x \ ; \ (G \cap A) \setminus \{x\} = \emptyset \ \land \exists open \ G \ni x \ ; \ (G \cap B) \setminus \{x\} = \emptyset$$

$$\Rightarrow \exists open G \ni x ; [(G \cap A) - \{x\}] \cup [(G \cap B) - \{x\}] = \emptyset$$

$$\Rightarrow \exists open G \ni x ; [G \cap (A \cup B)] - \{x\} = \emptyset$$

$$\Rightarrow x \notin d(A \cup B)$$

$$\Rightarrow d(A) \cup d(B) \subset d(A \cup B)$$
(2)

From (1) and (2) we get

$$d(A \cup B) = d(A) \cup d(B)$$
