3rd Lecture

Closed Sets and Closure

المجموعات المغلقة والانغلاق

Definition (1.4): Let (X, τ) be a topological space and $E \subset X$ we say that E is **closed** iff $d(E) \subset E$.

Example (1.9): Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, \{b, c, d\}, X\}$

Let $E = \{a, b, c\}$, $F = \{b, d\}$ and $H = \{a, d\}$. Determined whether the sets E, F and H are closed or not.

Solution:

$$E = \{a, b, c\}$$

$$a \notin d(E)$$

$$b \in d(E)$$

$$c \in d(E)$$

$$d \in d(E)$$

Now
$$d(E) = \{b, c, d\} \not\subset E$$

$$\Rightarrow d(E) \not\subset E$$

$$\Rightarrow$$
 E is not closed.

$$F = \{b, d\}$$

$$c \in d(F)$$

$$d \in d(F)$$

$$\Rightarrow d(F) = \{c, d\} \not\subset F$$

$$\Rightarrow$$
 F is not closed

$$H = \{a, d\}$$

$$d(H)=\emptyset\subset H$$

 $d(H) \subset H \Rightarrow H$ closed.

Corollary (1.1): A subset $E \subset (X, \tau)$ is closed iff E^c is open, i.e.

$$E \text{ closed} \Leftrightarrow E^c \text{ open}$$

Proof:

Assume that E is closed. We need to prove that E^c is open.

Let $x \in E^c \implies x \notin E$, but E is closed

$$\Rightarrow \exists open G_x; x \in G_x \subset E^c$$

$$\Rightarrow \ \forall \ x \in E^c, \exists \ open \ G_x; x \in G_x \subset E^c$$

$$\Rightarrow E^c = \bigcup_{x \in E^c} \{G_x : x \in G_x\} \text{ open}$$

 $\Rightarrow E^c$ is open

Assume that E^c is open. We need to show that E is closed

Let $x \in d(E), x \notin E$

$$\Rightarrow x \in d(E), x \in E^c$$

But E^c is open and $E \cap E^c = \emptyset$

$$\Rightarrow \exists open G = E^c \ni x; (E \cap E^c) - \{x\} = \emptyset$$

$$\Rightarrow x \notin d(E) \Rightarrow \text{contradiction}$$

$$\Rightarrow \forall x \in d(E), x \in E \Rightarrow d(E) \subset E \Rightarrow E \text{ is closed.}$$

.....

Corollary (1.2): If E is closed in (X, τ) , then

$$\exists$$
 open $G \ni x \notin E$ such that $x \in G \subset E^c$

Proof:

Assume that the requirement is not true

$$\Rightarrow \sim (\exists open G \ni x, G \subset E^c)$$
 is true.

$$\Rightarrow \forall open G \ni x; G \not\subset E^c$$

$$\Rightarrow \forall open G \ni x; G \cap E \neq \emptyset$$

Since $x \notin E$

 $\forall open G; (G \cap E) \setminus \{x\} \neq \emptyset$

- $\Rightarrow x \in d(E)$
- $\Rightarrow d(E) \not\subset E$
- \Rightarrow E is not closed.
- ⇒ Contradiction
- \Rightarrow The requirement is true.

Exercise (1.3): (Homework)

(1) Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d, e\}, X\}$. Find

- (i) The open sets and the closed sets.
- (ii) The sets which are both open and closed.
- (iii) The sets which are open but not closed.
- (iv) The sets which are closed but not open.
- (2) In a topological space if F is closed and $d(F) \subset E \subset F$. Then E is closed.
