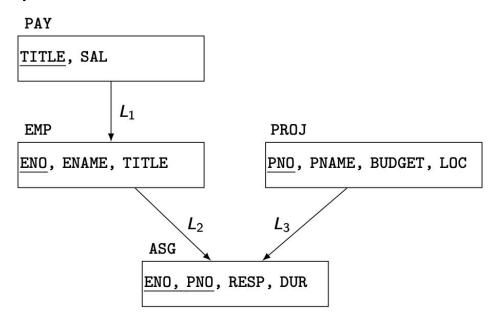
Fragmentation

- Horizontal Fragmentation (HF)
 - Primary Horizontal Fragmentation (PHF)
 - Derived Horizontal Fragmentation (DHF)
- Vertical Fragmentation (VF)
- Hybrid Fragmentation (HF)

PHF - Information Requirements

- Database Information
 - relationship



cardinality of each relation: card(R)

PHF – Information Requirements

- Application Information
 - \blacksquare minterm selectivities: $sel(m_i)$
 - The number of tuples of the relation that would be accessed by a user query which is specified according to a given minterm predicate m_i.
 - \square access frequencies: $acc(q_i)$
 - The frequency with which a user application qi accesses data.
 - Access frequency for a minterm predicate can also be defined.

Primary Horizontal Fragmentation

Definition:

$$R_j = \sigma_{F_j}(R), \quad 1 \le j \le w$$

where F_j is a selection formula, which is (preferably) a minterm predicate.

Therefore,

A horizontal fragment R_i of relation R consists of all the tuples of R which satisfy a minterm predicate m_i .

Given a set of minterm predicates M, there are as many horizontal fragments of relation R as there are minterm predicates.

Set of horizontal fragments also referred to as minterm fragments.

PHF – Algorithm

Given: A relation *R*, the set of simple predicates *Pr*

Output: The set of fragments of $R = \{R_1, R_2, ..., R_w\}$ which

obey the fragmentation rules.

Preliminaries:

- Pr should be complete
- Pr should be minimal

Completeness of Simple Predicates

A set of simple predicates Pr is said to be complete if and only if the accesses to the tuples of the minterm fragments defined on Pr requires that two tuples of the same minterm fragment have the same probability of being accessed by any application.

Example :

- Assume PROJ[PNO,PNAME,BUDGET,LOC] has two applications defined on it.
- □ Find the budgets of projects at each location. (1)
- Find projects with budgets less than \$200000. (2)

PHF – Example

- Fragmentation of relation PROJ
 - Applications:
 - Find the name and budget of projects given their no.
 - Issued at three sites
 - Access project information according to budget
 - □ one site accesses ≤200000 other accesses >200000
 - Simple predicates
 - For application (1)

 p_1 : LOC = "Montreal"

 p_2 : LOC = "New York"

 p_3 : LOC = "Paris"

For application (2)

 p_4 : BUDGET \leq 200000

 p_5 : BUDGET > 200000

 $Pr = Pr' = \{p_1, p_2, p_3, p_4, p_5\}$

PHF – Example

- Fragmentation of relation PROJ continued
 - Minterm fragments left after elimination

```
m_1: (LOC = "Montreal") \land (BUDGET \le 200000) m_2: (LOC = "Montreal") \land (BUDGET > 200000) m_3: (LOC = "New York") \land (BUDGET \le 200000) m_4: (LOC = "New York") \land (BUDGET > 200000) m_5: (LOC = "Paris") \land (BUDGET \le 200000) m_6: (LOC = "Paris") \land (BUDGET \le 200000)
```

PHF – Example

$PROJ_1$

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal

PROJ₃

PNO	PNAME	BUDGET	LOC
P2	Database Develop.	135000	New York

PROJ₄

PNO	PNAME	BUDGET	LOC
P3	CAD/CAM	255000	New York

$PROJ_6$

PNO	PNAME	BUDGET	LOC
P4	Maintenance	310000	Paris

PHF – Correctness

Completeness

 Since Pr' is complete and minimal, the selection predicates are complete

Reconstruction

□ If relation R is fragmented into $F_R = \{R_1, R_2, ..., R_r\}$

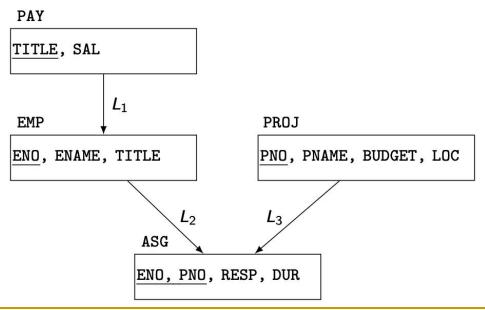
$$R = \bigcup_{\forall R_i \in FR} R_i$$

Disjointness

Minterm predicates that form the basis of fragmentation should be mutually exclusive.

Derived Horizontal Fragmentation

- Defined on a member relation of a link according to a selection operation specified on its owner.
 - Each link is an equijoin.
 - Equijoin can be implemented by means of semijoins.



DHF – Definition

Given a link L where owner(L)=S and member(L)=R, the derived horizontal fragments of R are defined as

$$R_i = R \ltimes_F S_i$$
, $1 \le i \le w$

where *w* is the maximum number of fragments that will be defined on *R* and

$$S_i = \sigma_{F_i}(S)$$

where F_i is the formula according to which the primary horizontal fragment S_i is defined.

DHF – Example

Given link L_1 where owner(L_1)=SKILL and member(L_1)=EMP

 $EMP_1 = EMP \times SKILL_1$

 $EMP_2 = EMP \times SKILL_2$

where

 $SKILL_1 = \sigma_{SAL \leq 30000}(SKILL)$

 $SKILL_2 = \sigma_{SAL>30000}(SKILL)$

ASG₁

	ENO	PNO	RESP	DUR
	E3	P3	Consultant	10
ı	E3	P4	Engineer	48
١	E4	P2	Programmer	18
	E7	P3	Engineer	36

ASG₂

ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E5	P2	Manager	24
E6	P4	Manager	48
E8	P3	Manager	40

DHF – Correctness

Completeness

- Referential integrity
- Let R be the member relation of a link whose owner is relation S which is fragmented as $F_S = \{S_1, S_2, ..., S_n\}$. Furthermore, let A be the join attribute between R and S. Then, for each tuple t of R, there should be a tuple t of S such that

$$t[A] = t'[A]$$

- Reconstruction
 - Same as primary horizontal fragmentation.
- Disjointness
 - Simple join graphs between the owner and the member fragments.

Vertical Fragmentation

- Has been studied within the centralized context
 - design methodology
 - physical clustering
- More difficult than horizontal, because more alternatives exist.

Two approaches:

- grouping
 - attributes to fragments
- splitting
 - relation to fragments

Vertical Fragmentation

- Overlapping fragments
 - grouping
- Non-overlapping fragments
 - splitting

We do not consider the replicated key attributes to be overlapping.

Advantage:

Easier to enforce functional dependencies (for integrity checking etc.)

VF – Information Requirements

Application Information

- Attribute affinities
 - a measure that indicates how closely related the attributes are
 - This is obtained from more primitive usage data
- Attribute usage values
 - Given a set of queries $Q = \{q_1, q_2, ..., q_q\}$ that will run on the relation $R[A_1, A_2, ..., A_n]$,

$$use(q_i, A_j) = \begin{cases} 1 \text{ if attribute } A_j \text{ is referenced by query } q_i \\ 0 \text{ otherwise} \end{cases}$$

 $use(q_i, \bullet)$ can be defined accordingly

VF – Definition of $use(q_i, A_i)$

Consider the following 4 queries for relation PROJ

 q_1 : **SELECT** BUDGET q_2 : **SELECT** PNAME,BUDGET **FROM** PROJ **FROM** PROJ

WHERE PNO=Value

 q_3 : **SELECT** PNAME q_4 : **SELECT SUM**(BUDGET)

FROM PROJ FROM PROJ

WHERE LOC=Value WHERE LOC=Value

	PNO	PNAME	BUDGET	LOC
q_1	[1	0	1	0]
q_2	0	1	1	0
q ₃	0	1	0	1
q_4	0	0	1	1

VF – Algorithm

Two problems:

- Cluster forming in the middle of the Clustered Affinity Matrix.
 - Shift a row up and a column left and apply the algorithm to find the "best" partitioning point
 - Do this for all possible shifts
 - \bigcirc Cost $O(m^2)$
- More than two clusters
 - m-way partitioning
 - □ try 1, 2, ..., *m*–1 split points along diagonal and try to find the best point for each of these
 - Cost O(2^m)

VF – Correctness

A relation R, defined over attribute set A and key K, generates the vertical partitioning $F_R = \{R_1, R_2, ..., R_r\}$.

- Completeness
 - The following should be true for A:

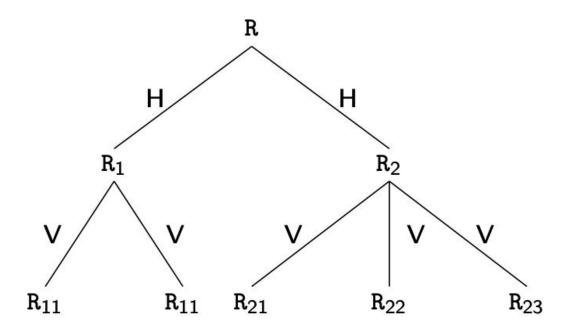
$$A = \bigcup A_{R_i}$$

- Reconstruction
 - Reconstruction can be achieved by

$$R = \bowtie_K R_i, \forall R_i \in F_R$$

- Disjointness
 - Tuple Identifiers (TID's) are not considered to be overlapping since they are maintained by the system
 - Duplicated keys are not considered to be overlapping

Hybrid Fragmentation



Reconstruction of Hybrid Fragmentation

