4th Lecture

Closure of a Set انغلاق المجموعة

Definition (1.5): Let (X, τ) be a topological space and $E \subset X$, we define the **closure** of a set E, denoted by \overline{E} as follows:

$$\bar{E} = \bigcap_{\forall F \supset E} F$$
, where F is closed

Example (1.10):

Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, \{b, c, d, e\}, X\}.$

Let $E = \{d, e\}$, $G = \{a, e\}$ and $H = \{d\}$. Find \overline{E} , \overline{G} and \overline{H} .

Solution:

The closed sets in (X, τ) are $X, \{b, c, d, e\}, \{a, d, e\}, \{d, e\}, \{a\}, \emptyset$

$$\bar{E} = \bigcap_{\forall F \supset E} F$$
, where F is closed

$$= X \cap \{b, c, d, e\} \cap \{a, d, e\} \cap \{d, e\} = \{d, e\}$$

$$\bar{G} = \bigcap_{\forall F \supset G} F$$
, where F is closed

$$= X \cap \{a, d, e\} = \{a, d, e\}$$

$$\overline{H} = \bigcap_{\forall F \supset H} F$$
, where F is closed

$$= X \cap \{a, d, e\} \cap \{b, c, d, e\} \cap \{d, e\} = \{d, e\}$$

.....

Remark (1.6):

- (1) Since $\bigcap_{\forall F \supset E} F \subset F$, \forall *closed* F. Thus \overline{E} is the smallest closed set containing E.
- (2) If E is itself closed then $\overline{E} = E$.

Theorem (1.4): If E is a subset of (X, τ) . Then

$$\bar{E} = E \cup d(E)$$

Proof:

We have

$$E \subset \overline{E}$$
 and $d(E) \subset \overline{E}$

$$\Rightarrow E \cup d(E) \subset \bar{E}$$

.....(1)

We need to show that $\bar{E} \subset E \cup d(E)$

Let $x \notin E \cup d(E)$

$$\Rightarrow x \notin E \land x \notin d(E)$$

Since $x \notin d(E)$

$$\Rightarrow \exists open G_x \ni x, (E \cap G_x) \setminus \{x\} = \emptyset$$

$$\Rightarrow \forall x \notin E \cup d(E), \exists open G_x \ni x, (E \cap G_x) \setminus \{x\} = \emptyset$$

$$\Rightarrow \forall x \notin E \cup d(E), x \notin \overline{E}$$

$$\Rightarrow \bar{E} \subset E \cup d(E)$$

.....(2)

From (1) and (2) we get

$$\bar{E} = E \cup d(E)$$

بديهيات الانغلاق (Closure Axioms) بديهيات الانغلاق

If A, B are subsets of a topological space (X, τ) then

(i)
$$\overline{\emptyset} = \emptyset \land \overline{X} = X$$
.

(ii)
$$A \subset \bar{A}$$
.

(iii)
$$\overline{(\bar{A})} = \bar{A}$$
.

(iv)
$$A \subset B \Rightarrow \bar{A} \subset \bar{B}$$
.

(v)
$$\overline{(A \cup B)} = \overline{A} \cup \overline{B}$$
.

Proof:

- (i) Since \emptyset is closed $\Rightarrow \overline{\emptyset} = \emptyset$. Also X is closed $\Rightarrow \overline{X} = X$.
- (ii) We have $\bar{A} = \bigcap_{F \ closed} F, \ \forall \ F \supset A$ $\Rightarrow \bigcap_{F \ closed} F \supset A \Rightarrow \bar{A} \supset A \text{ or } A \subset \bar{A}$
- (iii) Let $E = \overline{A}$, since E is closed $\Rightarrow \overline{E} = E$ $\Rightarrow \overline{(\overline{E})} = \overline{E}$
- (iv) We have $\bar{A} = \bigcap_{\forall F \supset A} F$ and $\bar{B} = \bigcap_{\forall F \supset B} F$ Since $A \subset B$ then we have $\bar{B} = \bigcap_{\forall F \supset B \subset A} F \supset \bigcap_{\forall F \supset A} F = \bar{A}$ $\Rightarrow \bar{A} \subset \bar{B}$
- $(\mathbf{v}) \ \overline{(A \cup B)} = (A \cup B) \cup d(A \cup B)$ $= A \cup B \cup d(A) \cup d(B)$ $= (A \cup d(A)) \cup (B \cup d(B))$ $= \overline{A} \cup \overline{B}$

Exercises (1.4): (Homework)

- (1) Disprove that $\overline{(A \cap B)} = \overline{A} \cap \overline{B}$. (Give an example)
- (2) Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$ Let $E = \{a, d\}, G = \{b, d\}$ and $H = \{b, c\}$. Find \overline{E} , \overline{G} and \overline{H} .
