

COMPUTER SCIENCE DEPARTMENT

5th Lecture – Distributed Database Systems Fragmentation Examples Sunday 16th of Feb. 2025

LECTURER:
DR. RAYAN YOUSIF ALKHAYAT

DISTRIBUTED DATABASE SYSTEMS FRAGMENTATION EXAMPLES

EXAMPLE 1: HORIZONTAL FRAGMENTATION

PROBLEM STATEMENT

A company database contains the **EMPLOYEE** table with the following attributes:

EMP_ID (Primary Key)

NAME

DEPARTMENT

SALARY

LOCATION

The company wants to **horizontally fragment** the table based on employee **salaries**, where:

EMP_LOW: Employees with **SALARY** \leq **50,000**

EMP_HIGH: Employees with **SALARY** > **50,000**

Design the horizontal fragmentation and verify its correctness.

Using **Primary Horizontal** • **Fragmentation (PHF)**, we define selection predicates:

P1: SALARY \leq 50,000 •

P2: SALARY > 50,000 •

The fragmentation is defined as: •

EMP_LOW = σ (SALARY \leq 50,000) • (EMPLOYEE)

EMP_HIGH = σ (SALARY > 50,000) • (EMPLOYEE)

Correctness Checks:

Completeness: Every tuple in EMPLOYEE is included in either EMP_LOW or EMP_HIGH.

Reconstruction: The original table can be reconstructed using **UNION**:

EMPLOYEE=EMP_LOWUEMP_HIGHEMPLOYEE =

Disjointness: No tuple appears in both fragments since **P1** and **P2** are mutually exclusive.

EXAMPLE 2: VERTICAL FRAGMENTATION

PROBLEM STATEMENT

- A hospital database contains the **PATIENT** table with the following attributes:

PATIENT_ID (Primary Key)

NAME

AGE

DIAGNOSIS

TREATMENT

The database is accessed by two different applications:

Administrative System: Requires PATIENT_ID, NAME, and AGE.

Medical System: Requires PATIENT_ID, DIAGNOSIS, and TREATMENT.

- Design a **Vertical Fragmentation** that optimizes access based on application needs.

Using **Vertical Fragmentation**, we define the following fragments:

PATIENT_ADMIN = π (PATIENT_ID, NAME, AGE) (PATIENT)

PATIENT_MEDICAL = π (PATIENT_ID, DIAGNOSIS, TREATMENT) (PATIENT)

Correctness Checks:

Completeness:

The set of attributes in **PATIENT_ADMIN** and **PATIENT_MEDICAL** covers all attributes of **PATIENT**.

Reconstruction:

The original table can be reconstructed using **JOIN** on **PATIENT_ID**: PATIENT=PATIENT_ADMIN⋈PATIENT

Disjointness:

The **PATIENT_ID** is duplicated in both fragments to maintain integrity, but all other attributes are uniquely assigned.

PATIENT TABLE | PATIENT_ID | NAME | AGE | DIAGNOSIS | TREATMENT | ↓ Vertical Fragmentation PATIENT_MEDICAL PATIENT_ADMIN | PATIENT_ID | NAME | AGE | PATIENT_ID | DIAGNOSIS | TREATMENT |

