5th Lecture

المجموعة الداخلية Interior Set

Definition (1.6): Let (X, τ) be a topological space and $E \subset X$, we define the **interior** of a set E, denoted by E° or i(E) as follow:

$$E^{\circ} = \bigcup_{\forall G \subset E} G$$
, where *G* is open

Example (1.10):

Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}, X\}$.

Find the interior of the following sets

$$A = \{a, b, e\}, B = \{a, b, c\}, C = \{c\} \text{ and } E = \{a, c, d\}$$

Solution:

$$A = \{a, b, e\}$$

The open sets contained in A are \emptyset , $\{a\}$,

$$A^{\circ} = \bigcup_{\forall G \subset A} G$$
, where G is open

$$\Rightarrow A^{\circ} = \emptyset \cup \{a\} = \{a\}$$

Now
$$B = \{a, b, c\}$$

The open sets contained in B are \emptyset , $\{a\}$,

$$B^{\circ} = \bigcup_{\forall G \subset B} G$$
, where G is open

$$\Rightarrow B^{\circ} = \emptyset \cup \{a\} = \{a\}$$

Now
$$C = \{c\}$$

The open sets contained in C is \emptyset

$$C^{\circ} = \bigcup_{\forall G \subset C} G$$
, where G is open

$$\Rightarrow C^{\circ} = \bigcup \emptyset = \emptyset$$

Now $E = \{a, c, d\}$

The open sets contained in E are \emptyset , $\{a\}$, $\{c, d\}$, $\{a, c, d\}$

$$E^{\circ} = \bigcup_{\forall G \subset E} G$$
, where G is open

$$\Rightarrow E^{\circ} = \emptyset \cup \{a\} \cup \{c,d\} \cup \{a,c,d\} = \{a,c,d\}$$

Remark (1.7): If is possible to find the interior of a set if its closure is given as in the following theorem:

Theorem (1.5): For every subset E of (X, τ) we have

$$E^{\circ} = \overline{E^c}^c$$

Proof:

Let $x \in E^{\circ} \Rightarrow x \notin E^{c}$, $\forall x \in E^{\circ}$

Now $E^{\circ} \cap E^{c} = \emptyset$

$$\Rightarrow (E^c \cap E^\circ) \setminus \{x\} = \emptyset$$

$$\Rightarrow x \notin d(E^c)$$
 also $x \notin E^c$

$$\Rightarrow x \notin E^c \cup d(E^c)$$

$$\Rightarrow x \notin \overline{E^c}$$

$$\Rightarrow x \in \overline{E^c}^c$$

Now, let $x \in \overline{E^c}^c$

$$\Rightarrow x \notin \overline{E^c}$$

$$\Rightarrow x \notin E^c \cup d(E^c)$$

$$\Rightarrow x \notin E^c \land x \notin d(E^c)$$

Since $x \notin d(E^c) \Rightarrow x$ is not a limit point of E^c

$$\Rightarrow \exists open G_x \ni x; (E^c \cap G_x) \setminus \{x\} = \emptyset$$

 $\Rightarrow \exists open G_x \ni x; E^c \cap G_x = \emptyset$

$$\Rightarrow \exists open G_x \ni x; G_x \subset E$$

$$\Rightarrow x \in E^{\circ}$$

From (1) and (2) we get

$$E^{\circ} = \overline{E^c}^c$$

Theorem (1.6): If A, B are subsets of (X, τ) . Then

(i)
$$X^{\circ} = X$$
, $\emptyset^{\circ} = \emptyset$

(ii) A° is the largest open set in A

(iii)
$$A^{\circ} \subset A$$

(iv)
$$A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$$

(v)
$$A^{\circ^{\circ}} = A^{\circ}$$

(vi)
$$(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

Proof:

(i)
$$X^{\circ} = \overline{X^{c}}^{c}$$

 $= \overline{\emptyset}^{c} = \emptyset^{c} = X$
 $\emptyset^{\circ} = \overline{\emptyset^{c}}^{c}$
 $= \overline{X}^{c} = X^{c} = \emptyset$

(ii)
$$A^{\circ} = \bigcup_{\alpha \in A} G_{\alpha}$$
, $\forall open G_{\alpha} \subset A$
 $\Rightarrow \bigcup_{\alpha \in A} G_{\alpha} \subset A$

Since
$$\bigcup_{\alpha \in \Lambda} G_{\alpha} \supset G_{\alpha}, \alpha \in \Lambda$$

 \Rightarrow A° is the largest open set in A

(iii) From (ii) we have $A^{\circ} \subset A$

(iv)
$$A^{\circ} = \bigcup_{\forall G_{\alpha} \subset A \subset B} G_{\alpha}$$
, $\forall open G_{\alpha} \subset B$
 $A^{\circ} \subset B^{\circ}$

$$(\mathbf{v}) \ (A^{\circ})^{\circ} = \overline{\left(\overline{A^c}^c\right)^c}^c = \overline{(\overline{A^c})^c} = \overline{(\overline{A^c})^c} = A^{\circ}$$

(vi) We have

$$A \cap B \subset A \implies (A \cap B)^{\circ} \subset A^{\circ}$$

$$A \cap B \subset B \ \Rightarrow \ (A \cap B)^\circ \subset B^\circ$$

$$\Rightarrow (A \cap B)^{\circ} \subset (A^{\circ} \cap B^{\circ})$$

We need to show that $(A^{\circ} \cap B^{\circ}) \subset (A \cap B)^{\circ}$

Let $x \notin (A \cap B)^{\circ}$

 \Rightarrow x is not an interior point of $(A \cap B)$

$$\Rightarrow \ \forall \ open \ G_x \ni x, x \in G_x \not\subset (A \cap B)$$

$$\Rightarrow \forall open G_x \ni x, x \in G_x \not\subset A \lor \forall open G_x \ni x, x \in G_x \not\subset B$$

$$\Rightarrow x \notin A^{\circ} \lor x \notin B^{\circ}$$

$$\Rightarrow x \notin A^{\circ} \cap B^{\circ}$$

$$\Rightarrow (A^{\circ} \cap B^{\circ}) \subset (A \cap B)^{\circ}$$

.....(2)

.....(1)

From (1) and (2) we get

$$(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

Exercises (1.5): (Homework)

- (1) Prove that $\bar{E} = E^{c^{\circ c}}$.
- (2) Disprove that $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$. (Give an example)
