6th Lecture

المجموعة الخارجية Exterior Set

Definition (1.7): Let (X, τ) be a topological space and $E \subset X$, we define the **exterior** of a set E, denoted by E^e or e(E) as follow:

$$E^{e} = \{x \in X : y \in E^{c^{\circ}}\}$$
, i.e. $E^{e} = E^{c^{\circ}}$

Example (1.11):

Let $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, \{a\}, \{a, c\}, \{a, c, d\}, \{b, c, d, e\}, X\}$.

Find the exterior of the sets $A = \{a, b, d\}$, $B = \{c, d, e\}$, and $E = \{b, e\}$.

Solution:

$$A = \{a, b, d\} \Rightarrow A^c = \{c, e\}$$

The open sets contained in A^c is \emptyset

$$\Rightarrow A^{c^{\circ}} = \bigcup_{\forall G \subset A^{c}} G = \bigcup \emptyset = \emptyset$$

$$\Rightarrow A^e = \emptyset$$

We have

$$B = \{c, d, e\} \Rightarrow B^c = \{a, b\}$$

The open sets contained in B^c are \emptyset and $\{a\}$

$$\Rightarrow B^{c^{\circ}} = \bigcup_{\forall G \subseteq B^{c}} G = \emptyset \cup \{a\} = \{a\}$$

$$\Rightarrow B^e = \{a\}$$

We have

$$E = \{b, e\} \Rightarrow E^c = \{a, c, d\}$$

The open sets contained in E^c are \emptyset , $\{a\}$, $\{a,c\}$ and $\{a,c,d\}$

$$\Rightarrow E^{c^{\circ}} = \bigcup_{\forall \ G \subset E^{c}} G = \emptyset \cup \{a\} \cup \{a,c\} \cup \{a,c,d\} = \{a,c,d\}$$

$$\Rightarrow E^e = \{a, c, d\}$$

Corollary (1.3): If A, B are subsets of (X, τ) . Then

- (i) $\emptyset^e = X$
- (ii) $A^e \subset A^c$
- (iii) $B^e = B^{e^{c^e}}$
- (iv) $(A \cup B)^e = A^e \cap B^e$

Proof:

(i)
$$\emptyset^e = \emptyset^{c^{\circ}} = X^{\circ} = X$$

(ii)
$$A^e = A^{c^\circ} \subset A^c \implies A^e \subset A^c$$

(iii)
$$B^{e^{c^e}} = ((B^{c^\circ})^c)^{c^\circ} = (B^{c^\circ})^\circ = B^{c^\circ} = B^e$$

$$\therefore B^e = B^{e^{c^e}}$$

(iv)
$$(A \cup B)^e = (A \cup B)^{c^\circ}$$

= $(A^c \cap B^c)^\circ$
= $A^{c^\circ} \cap B^{c^\circ} = A^e \cap B^e$

$$\therefore (A \cup B)^e = A^e \cap B^e$$

Boundary of a Set حدود المجموعة

Definition (1.8): Let (X, τ) be a topological space and $E \subset X$, we define the **boundary** of a set E, denoted by E^b or b(E) as follow:

$$E^b = (E^\circ \cup E^e)^c$$

Note (1.1):
$$E^b = (E^\circ \cup E^e)^c = E^{\circ^c} \cap E^{e^c} = E^{\circ^c} \cap E^{c^{\circ^c}} = E^{\circ^c} \cap \overline{E} = \overline{E} - E^\circ$$

 $\Rightarrow E^b = \overline{E} - E^\circ$

Example (1.12):

Let
$$X = \{a, b, c, d, e\}$$
 and $\tau = \{\emptyset, \{a\}, \{a, c\}, \{a, c, d\}, \{b, c, d, e\}, X\}.$

Find the boundary of the sets $A = \{a, b, c\}, B = \{b, d, e\}.$

Solution:

$$A = \{a, b, c\}$$

The closed sets are X, $\{b, c, d, e\}$, $\{b, d, e\}$, $\{b, e\}$, $\{a\}$, \emptyset

$$\bar{A} = \bigcap_{\forall F \supset A} G$$
, where *F* is closed

$$= X$$

$$A^{\circ} = \bigcup_{\forall G \subset A} G$$
, where G is open
= $\emptyset \cup \{a\} \cup \{a, c\} = \{a, c\}$

Hence

$$A^{b} = \bar{A} - A^{\circ}$$

= $X - \{a, c\} = \{b, d, e\}$

We have

$$B = \{b, d, e\}$$

$$\bar{B} = \bigcap_{\forall F \supset B} G$$
, where *F* is closed

$$= X \cap \{b, c, d, e\} \cap \{b, d, e\} = \{b, d, e\}$$

$$B^{\circ} = \bigcup_{\forall G \subseteq B} G$$
, where G is open
= $\bigcup \emptyset = \emptyset$

Hence

$$B^{b} = \overline{B} - B^{\circ}$$
$$= \{b, d, e\} - \emptyset = \{b, d, e\}$$
