8th Lecture

Theorem (2.2): If (X, τ) is a topological space and $X^* \subset X$. Then (X^*, τ^*) is a topology.

Proof:

- (1) Since $\emptyset \in \tau$ and $\emptyset \cap X^* = \emptyset \Rightarrow \emptyset \in \tau^*$ Also since $X \in \tau$ and $X \cap X^* = X^* \Rightarrow X^* \in \tau^*$
- (2) Let $G_{\lambda}^* \in \tau^*, \ \forall \ \lambda \in \Lambda$ $\Rightarrow G_{\lambda}^* = G_{\lambda} \cap X^*, \ \forall \ \lambda \in \Lambda$

Now

$$\Rightarrow \bigcup_{\lambda \in \Lambda} G_{\lambda}^* = \bigcup_{\lambda \in \Lambda} (G_{\lambda} \cap X^*)$$

$$= (\bigcup_{\lambda \in \Lambda} G_{\lambda}) \cap (\bigcup X^*)$$

$$= (\bigcup_{\lambda \in \Lambda} G_{\lambda}) \cap X^* \in \tau^* \text{ because } \bigcup_{\lambda \in \Lambda} G_{\lambda} \in \tau$$

$$\Rightarrow \bigcup_{\lambda \in \Lambda} G_{\lambda}^* \in \tau^*$$

$$\Rightarrow G_i^* = G_i \cap X^*, \qquad 1 \le i \le n$$

$$\Rightarrow \bigcap_{i=1}^n G_i^* = \bigcap_{i=1}^n (G_i \cap X^*)$$

$$\Rightarrow \bigcap_{i=1}^n G_i^* = \bigcap_{i=1}^n G_i \cap X^*$$

But
$$\bigcap_{i=1}^n G_i \in \tau$$

 $(3) G_i^* \in \tau, \quad 1 \le i \le n$

$$\Rightarrow \bigcap_{i=1}^n G_i \cap X^* \in \tau^*$$

$$\Rightarrow \bigcap_{i=1}^n G_i \in \tau^*$$

Hence (X^*, τ^*) is a topology on X^* .

Theorem (2.3): If (X^*, τ^*) is a topological subspace of (X, τ) and if $A \subset X^* \subset X$ is τ open (i.e. A is open w.r.t. τ) Hence A is τ^* -open.

Proof:

We have $\tau^* = \{G^* : G^* = G \cap X^*, G \in \tau\}$

We are given $A \subset X^*$, $A \in \tau$

$$\Rightarrow A \cap X^* = A$$

We have $A \cap X^* \in \tau^* \Rightarrow A \in \tau^*$

 \Rightarrow A is τ^* - open

Note (2.1): The converse of the above theorem is not true is general as shown in the following example.

Example (2.5): Let $X = \{a, b, c, d, e\}$ and

$$\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, \{a, b, c, d\}, \{b, c, d, e\}, X\}$$

Let
$$X^* = \{a, d, e\}$$
 and $\tau^* = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{d, e\}, X^*\}$

Solution:

$$\{d\} \subset X^* \text{ and } \{d\} \text{ is } \tau^* \text{ - open }$$

But $\{d\}$ is not τ - open

Theorem (2.4): If *E* is a subset of (X^*, τ^*) and (X^*, τ^*) is a topological subspace of (X, τ) . Then

$$\overline{E^*} = X^* \cap \overline{E}$$

Proof: We have

$$R.H.S. = X^* \cap \overline{E}$$

 $= X^* \cap \{ \cap F : F \in \Psi \}$, where Ψ is the family of closed $F \supset E$

$$= \bigcap \{X^* \cap F : F \in \Psi\}$$

$$= \bigcap \{F^*: F^* \in \Psi^*\} \text{ , where } \Psi^* \text{ is the family of closed } F^* \supset E^*$$

$$= \bigcap_{\forall F^* \supset E^*} F^* \text{ , where } F^* \text{ is closed}$$

$$= E^* = L.H.S.$$

Theorem (2.5): If (X^{**}, τ^{**}) is a topological subspace of and (X^*, τ^*) and (X^*, τ^*) is a topological subspace of (X, τ) . Then (X^{**}, τ^{**}) is a topological subspace of (X, τ) .

Proof: We have

$$\tau^{**} = \{G^{**} : G^{**} = X^{**} \cap G^{*} ; G^{*} \in \tau^{*}\}$$

$$= \{G^{**} : G^{**} = X^{**} \cap (X^{*} \cap G) ; G \in \tau\}$$

$$= \{G^{**} : G^{**} = (X^{**} \cap X^{*}) \cap G ; G \in \tau\}$$

$$\tau^{**} = \{G^{**} : G^{**} = X^{**} \cap G ; G \in \tau\}$$

$$\therefore (X^{**}, \tau^{**}) \text{ is a topological subspace of } (X, \tau).$$

Exercises (2.1): (Homework)

- (1) If (X^*, τ^*) is a topological subspace of (X, τ) and if $A \subset X^* \subset X$ is τ -closed (i.e. A is closed w.r.t. τ) Then A is τ^* -closed.
- (2) Give an example to show that the converse of (1) is not true in general.
