9th Lecture

Chapter Three **Connectedness**

الفصل

Definition (3.1): (Separation)

Let (X, τ) be a topological space. We say that the set E is **separable** in (X, τ) , if there is two sets A, B such that

- (i) $A, B \neq \emptyset$
- (ii) $A \cap B = \emptyset$
- (iii) $A \cup B = E$
- (iv) $[A \cap d(B)] \cup [B \cap d(A)] = \emptyset$

Remark (3.1): From (iii) and (iv) we get

Example (3.1): Let
$$X = \{a, b, c, d, e\}$$
 and $\tau = \{\emptyset, \{a, b, c\}, \{c, d, e\}, \{c\}, X\}$.

Determine whether $E = \{a, d, e\}$, $G = \{b, d, e\}$ are separable or not.

Solution:

(1)
$$E = \{a, d, e\}$$

Let
$$A = \{a, d\}, B = \{e\}$$

$$A, B \neq \emptyset$$
, $A \cap B = \emptyset$

The family of closed subsets of *X* are:

$$X, \{d, e\}, \{a, b\}, \{a, b, d, e\}, \emptyset$$

$$\bar{A} = \overline{\{a,d\}} = \bigcap_{F \supset A} F = X \cap \{a,b,d,e\} = \{a,b,d,e\}$$

$$\bar{B} = \overline{\{e\}} = \bigcap_{F \supset B} F = X \cap \{d, e\} \cap \{a, b, d, e\} = \{d, e\} \\
\Rightarrow [(A \cap \bar{B}) \cup (B \cap \bar{A})] = \{d\} \cup \{e\} = \{d, e\} \neq \emptyset \\
\text{If } A = \{a\}, B = \{d, e\} \\
A, B \neq \emptyset, A \cap B = \emptyset \\
\bar{A} = \overline{\{a\}} = \bigcap_{F \supset A} F = X \cap \{a, b\} \cap \{a, b, d, e\} = \{a, b\} \\
\bar{B} = \overline{\{d, e\}} = \bigcap_{F \supset B} F = X \cap \{d, e\} \cap \{a, b, d, e\} = \{d, e\} \\
\Rightarrow [(A \cap \bar{B}) \cup (B \cap \bar{A})] = \emptyset \cup \emptyset = \emptyset \\
\Rightarrow E \text{ is separable in } (X, \tau).$$

(2) $G = \{b, d, e\}$

Let
$$A = \{b\}, B = \{d, e\}$$

$$A, B \neq \emptyset, A \cap B = \emptyset$$

$$\bar{A} = \overline{\{b\}} = \underset{F \supset A}{\bigcap} F = X \cap \{a,b\} \cap \{a,b,d,e\} = \{a,b\}$$

$$\overline{B} = \overline{\{d,e\}} = \bigcap_{F \supset B} F = X \cap \{d,e\} \cap \{a,b,d,e\} = \{d,e\}$$

$$\Rightarrow [(A \cap \overline{B}) \cup (B \cap \overline{A})] = \emptyset \cup \emptyset = \emptyset$$

 \Rightarrow G is separable in (X, τ) .

Note (3.1): The set E is separable in (X, τ) we denote it by = A/B.

التر ابط **Definition (3.2): (Connectedness)**

مترابطة Let (X, τ) be a topological space. We say that a subset E is **connected** if there does not exist a separation for E in (X, τ) .

Example (2.3):

- (1) In any topological space (X, τ) , the empty set \emptyset and the universal set X are connected.
- (2) In any topological space (X, τ) , the singleton set $\{x\}$ is always connected.

Theorem (3.1): The (X^*, τ^*) is a topological subspace of (X, τ) . Then E is connected in (X, τ) iff E is connected in (X^*, τ^*) .

Proof:

Let $E \subset X^* \subset X$

Let $A, B \neq \emptyset$ and $A \cap B = \emptyset$

 $\Rightarrow A, B \subset E \subset X^*$

Now, if *E* is connected in (X, τ) . Then

 $\Leftrightarrow (A \cap \bar{B}) \cup (\bar{A} \cap B) \neq \emptyset$

 $\Leftrightarrow [(A \cap X^*) \cap \bar{B}] \cup [\bar{A} \cap (B \cap X^*)] \neq \emptyset$

 $\Leftrightarrow [A \cap (X^* \cup \overline{B})] \cup [(X^* \cap \overline{A}) \cap B] \neq \emptyset$

 $\Leftrightarrow [A \cap \overline{B^*}] \cup [\overline{A^*} \cap B] \neq \emptyset$

 \Leftrightarrow E is connected in (X^*, τ^*) .
