Some Preliminary Examples of DES

DES works on bits, or binary numbers--the 0s and 1s common to digital computers. Each group of four bits makes up a hexadecimal, or base 16, number. Binary "0001" is equal to the hexadecimal number "1", binary "1000" is equal to the hexadecimal number "8", "1001" is equal to the hexadecimal number "9", "1010" is equal to the hexadecimal number "F".

DES works by encrypting groups of 64 message bits, which is the same as 16 hexadecimal numbers. To do the encryption, DES uses "keys" where are also *apparently* 16 hexadecimal numbers long, or *apparently* 64 bits long. However, every 8th key bit is ignored in the DES algorithm, so that the effective key size is 56 bits. But, in any case, 64 bits (16 hexadecimal digits) is the round number upon which DES is organized.

For example, if we take the plaintext message "8787878787878787", and encrypt it with the DES key "0E329232EA6D0D73", we end up with the ciphertext "0000000000000000". If the ciphertext is decrypted with the same secret DES key "0E329232EA6D0D73", the result is the original plaintext "87878787878787".

This example is neat and orderly because our plaintext was exactly 64 bits long. The same would be true if the plaintext happened to be a multiple of 64 bits. But most messages will not fall into this category. They will not be an exact multiple of 64 bits (that is, an exact multiple of 16 hexadecimal numbers).

For example, take the message "Your lips are smoother than vaseline". This plaintext message is 38 bytes (76 hexadecimal digits) long. So this message must be padded with some extra bytes at the tail end for the encryption. Once the encrypted message has been decrypted, these extra bytes are thrown away. There are, of course, different padding schemes--different ways to add extra bytes. Here we will just add 0s at the end, so that the total message is a multiple of 8 bytes (or 16 hexadecimal digits, or 64 bits).

The plaintext message "Your lips are smoother than vaseline" is, in hexadecimal,

"596F7572206C6970 732061726520736D 6F6F746865722074

68616E2076617365 6C696E650D0A".

(Note here that the first 72 hexadecimal digits represent the English message, while "0D" is hexadecimal for Carriage Return, and "0A" is hexadecimal for Line Feed, showing that the message file has terminated.) We then pad this message with some 0s on the end, to get a total of 80 hexadecimal digits:

"596F7572206C6970 732061726520736D 6F6F746865722074

68616E2076617365 6C696E650D0A0000".

If we then encrypt this plaintext message 64 bits (16 hexadecimal digits) at a time, using the same DES key "0E329232EA6D0D73" as before, we get the ciphertext:

"C0999FDDE378D7ED 727DA00BCA5A84EE 47F269A4D6438190

9DD52F78F5358499 828AC9B453E0E653".

This is the secret code that can be transmitted or stored. Decrypting the ciphertext restores the original message "Your lips are smoother than vaseline".

How DES Works in Detail?

DES is a *block cipher*--meaning it operates on plaintext blocks of a given size (64-bits) and returns ciphertext blocks of the same size. Thus DES results in a *permutation* among the 2^64 (read this as: "2 to the 64th power") possible arrangements of 64 bits, each of which may be either 0 or 1. Each block of 64 bits is divided into two blocks of 32 bits each, a left half block **L** and a right half **R**. (This division is only used in certain operations.)

Example:

Let **M** be the plain text message $\mathbf{M} = 0123456789 \text{ABCDEF}$,

where **M** is in hexadecimal (base 16) format. Rewriting **M** in binary format, we get the 64-bit block of text:

 $\mathbf{M} = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101$

 $L = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111$

 $\mathbf{R} = 1000\ 1001\ 1010\ 1011\ 1100\ 1101\ 1110\ 1111$

The first bit of M is "0". The last bit is "1". We read from left to right.

DES operates on the 64-bit blocks using *key* sizes of 56- bits. The keys are actually stored as being 64 bits long, but every 8th bit in the key is not used (i.e. bits numbered 8, 16, 24, 32, 40, 48, 56, and 64). However, we will nevertheless number the bits from 1 to 64, going left to right, in the following calculations. But, as you will see, the eight bits just mentioned get eliminated when we create subkeys.

Example:

Let **K** be the hexadecimal key $\mathbf{K} = 133457799BBCDFF1$.

This gives us as the binary key (setting 1 = 0001, 3 = 0011, etc., and grouping together every eight bits, of which the last one in each group will be unused):

 $\mathbf{K} = 00010011\ 00110100\ 01010111\ 01111001\ 10011011\ 10111100\ 11011111$

The DES algorithm uses the following steps:

Step 1: Create 16 subkeys, each of which is 48-bits long.

The 64-bit key is permuted according to the following table, **PC-1**. Since the first entry in the table is "57", this means that the 57th bit of the original key \mathbf{K} becomes the first bit of the permuted key \mathbf{K} +. The 49th bit of the original key becomes the second bit of the permuted key. The 4th bit of the original key is the last bit of the permuted key. Note only 56 bits of the original key appear in the permuted key.

PC-1					
49	41	33	25	17	9
58	50	42	34	26	18
2	59	51	43	35	27
11	3	60	52	44	36
55	47	39	31	23	15
62	54	46	38	30	22
6	61	53	45	37	29
13	5	28	20	12	4
	58 2 11 55 62 6	49 41 58 50 2 59 11 3 55 47 62 54 6 61	49 41 33 58 50 42 2 59 51 11 3 60 55 47 39 62 54 46 6 61 53	49 41 33 25 58 50 42 34 2 59 51 43 11 3 60 52 55 47 39 31 62 54 46 38 6 61 53 45	49 41 33 25 17 58 50 42 34 26 2 59 51 43 35 11 3 60 52 44 55 47 39 31 23 62 54 46 38 30 6 61 53 45 37

Example: From the original 64-bit key

 $\mathbf{K} = 00010011 \ 00110100 \ 01010111 \ 01111001 \ 10011011 \ 10111100 \ 11011111$

we get the 56-bit permutation

 \mathbf{K} + = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

Next, split this key into left and right halves, C_{θ} and D_{θ} , where each half has 28 bits.

Example: From the permuted key K+, we get

 $C_{\theta} = 1111000\ 0110011\ 0010101\ 0101111$ $D_{\theta} = 0101010\ 1011001\ 1001111\ 0001111$

With C_0 and D_0 defined, we now create sixteen blocks C_n and D_n , 1 <= n <= 16. Each pair of blocks C_n and D_n is formed from the previous pair C_{n-1} and D_{n-1} , respectively, for n = 1, 2, ..., 16, using the following schedule of "left shifts" of the previous block. To do a left shift, move each bit one place to the left, except for the first bit, which is cycled to the end of the block.

Iteration	Number of
Number	Left Shifts
1	1
2	1
3	2
4	2
5	2
6	2
7	2
8	2
9	1
10	2
11	2
12	2
13	2
14	2
15	2
16	1

This means, for example, C_3 and D_3 are obtained from C_2 and D_2 , respectively, by two left shifts, and C_{16} and D_{16} are obtained from C_{15} and D_{15} , respectively, by one left shift. In all cases, by a single left shift is meant a rotation of the bits one place to the left, so that after one left shift the bits in the 28 positions are the bits that were previously in positions 2, 3,..., 28, 1.

Example: From original pair pair C_{θ} and D_{θ} we obtain:

 $C_{\theta} = 11110000110011001010101011111$

 $D_0 = 010101010110011001111100011111$

 $C_I = 1110000110011001010101011111$

 $D_I = 1010101011001100111100011110$

 $C_2 = 1100001100110010101010111111$

 $D_2 = 0101010110011001111000111101$

 $C_3 = 00001100110010101010111111111$

 $D_3 = 0101011001100111100011110101$

 $C_4 = 00110011001010101011111111100$

 $D_4 = 0101100110011110001111010101$

 $C_5 = 110011001010101011111111110000$

 $D_5 = 011001100111110001111101010101$

 $C_6 = 001100101010101111111111000011$

 $D_6 = 1001100111100011110101010101$

 $C_7 = 110010101010111111111100001100$

 $D_7 = 0110011110001111010101010101$

 $C_8 = 001010101011111111110000110011$

 $D_8 = 1001111000111101010101011001$

 $C_9 = 010101010111111111100001100110$

 $\boldsymbol{D9} = 0011110001111010101010110011$

 $C_{10} = 010101011111111110000110011001$

 $\boldsymbol{D}_{10} = 1111000111101010101011001100$

 $C_{II} = 010101111111111000011001100101$

 $\boldsymbol{D}_{11} = 1100011110101010101100110011$

 $C_{12} = 010111111111100001100110010101$

 $\boldsymbol{D_{12}} = 0001111010101010110011001111$

 $C_{I3} = 01111111110000110011001010101$

 $D_{13} = 0111101010101011001100111100$

 $C_{14} = 11111111000011001100101010101$

 $D_{14} = 11101010101011001100111110001$

 $C_{15} = 111111000011001100101010101111$

 $\boldsymbol{D}_{15} = 10101010101100110011111000111$

 $C_{16} = 11110000110011001010101011111$

 $\boldsymbol{D_{16}} = 0101010101100110011110001111$

We now form the keys K_n , for 1 <= n <= 16, by applying the following permutation table to each of the concatenated pairs C_nD_n . Each pair has 56 bits, but **PC-2** only uses 48 of these.

```
PC-2
14
    17 11
            24
                 1
                     5
3
   28
       15
            6
                21
                    10
                26
23
    19 12
             4
                     8
       27
            20
                13
                     2
16
    7
    52
       31
            37
                 47
                     55
41
       51
                 33
30
    40
            45
                    48
    49 39
44
            56
                 34
                    53
    42 50
            36
                 29
                    32
46
```

Therefore, the first bit of K_n is the 14th bit of C_nD_n , the second bit the 17th, and so on, ending with the 48th bit of K_n being the 32th bit of C_nD_n .

Example: For the first key we have

 $C_ID_I = 1110000 \ 1100110 \ 0101010 \ 10111111 \ 1010101 \ 0110011 \ 0011110 \ 0011110$ which, after we apply the permutation **PC-2**, becomes

 $K_I = 000110\ 110000\ 001011\ 101111\ 111111\ 000111\ 000001\ 110010$

For the other keys we have

```
K_2 =
      011110
               011010
                        111011
                                 011001
                                          110110
                                                   111100
                                                            100111
                                                                     100101
K_3 =
      010101
               011111
                        110010
                                 001010
                                          010000
                                                   101100
                                                            111110
                                                                     011001
K_4 = 011100
                                 010110
               101010
                        110111
                                          110110
                                                   110011
                                                            010100
                                                                     011101
K_5 = 0111111
                                 000111
                                                                     101000
               001110
                        110000
                                          111010
                                                   110101
                                                            001110
K_6 = 011000
               111010
                        010100
                                 111110
                                          010100
                                                   000111
                                                            101100
                                                                     101111
K_7 =
                                 110111
                                                            100010
      111011
               001000
                        010010
                                          111101
                                                   100001
                                                                     111100
K_8 =
                                 111010
                                                                     111011
      111101
               111000
                        101000
                                          110000
                                                   010011
                                                            101111
K_9 =
      111000
               001101
                        101111
                                 101011
                                          111011
                                                   011110
                                                            011110
                                                                     000001
K_{10} =
      101100
               011111
                        001101
                                 000111
                                          101110
                                                   100100
                                                            011001
                                                                     001111
K_{11} =
                                 010011
      001000
               010101
                        111111
                                          110111
                                                   101101
                                                            001110
                                                                     000110
K_{12} =
      011101
               010111
                        000111
                                 110101
                                          100101
                                                   000110
                                                            011111
                                                                     101001
K_{13} =
      100101
                        010111
                                 010001
                                          111110
                                                   101011
                                                            101001
                111100
                                                                     000001
                                 110111
K_{14} =
      010111
                110100
                        001110
                                          111100
                                                   101110
                                                            011100
                                                                     111010
K_{15} =
       101111
                111001
                        000110
                                 001101
                                          001111
                                                   010011
                                                            111100
                                                                     001010
K_{16} =
       110010
               110011
                        110110
                                 001011
                                          000011
                                                   100001
                                                            011111
                                                                     110101
```

So much for the subkeys. Now we look at the message itself.

Step 2: Encode each 64-bit block of data.

There is an *initial permutation* **IP** of the 64 bits of the message data **M**. This rearranges the bits according to the following table, where the entries in the table show the new arrangement of the bits from their initial order. The 58th bit of **M** becomes the first bit of **IP**. The 50th bit of **M** becomes the second bit of **IP**. The 7th bit of **M** is the last bit of **IP**.

		IP)				
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Example: Applying the initial permutation to the block of text \mathbf{M} , given previously, we get

```
\mathbf{M} = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101
```

 $\mathbf{IP} = 1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1111\ 1111\ 0000\ 1010\ 1010\ 1111\ 0000$

Here the 58th bit of **M** is "1", which becomes the first bit of **IP**. The 50th bit of **M** is "1", which becomes the second bit of **IP**. The 7th bit of **M** is "0", which becomes the last bit of **IP**.

Next divide the permuted block **IP** into a left half L_{θ} of 32 bits, and a right half R_{θ} of 32 bits.

Example: From **IP**, we get L_{θ} and R_{θ}

 $L_{\theta} = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111$ $R_{\theta} = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010 \ 1010$

We now proceed through 16 iterations, for 1 <= n <= 16, using a function f which operates on two blocks--a data block of 32 bits and a key K_n of 48 bits--to produce a block of 32 bits. Let + denote XOR addition, (bit-by-bit addition modulo 2). Then for \mathbf{n} going from 1 to 16 we calculate

$$L_n = R_{n-1}$$

 $R_n = L_{n-1} + f(R_{n-1}, K_n)$

This results in a final block, for n = 16, of $L_{16}R_{16}$. That is, in each iteration, we take the right 32 bits of the previous result and make them the left 32 bits of the current step. For the right 32 bits in the current step, we XOR the left 32 bits of the previous step with the calculation f.

Example: For n = 1, we have

 $K_I = 000110\ 110000\ 001011\ 101111\ 111111\ 000111\ 000001\ 110010$

 $L_I = R_\theta = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$

 $\mathbf{R}_1 = \mathbf{L}_0 + \mathbf{f}(\mathbf{R}_0, \mathbf{K}_1)$

It remains to explain how the function f works. To calculate f, we first expand each block R_{n-1} from 32 bits to 48 bits. This is done by using a selection table that repeats some of the bits in R_{n-1} . We'll call the use of this selection table the function E. Thus $E(R_{n-1})$ has a 32 bit input block, and a 48 bit output block.

Let **E** be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are obtained by selecting the bits in its inputs in order according to the following table:

E BIT-SELECTION TABLE

Thus the first three bits of $\mathbf{E}(\mathbf{R}_{n-1})$ are the bits in positions 32, 1 and 2 of \mathbf{R}_{n-1} while the last 2 bits of $\mathbf{E}(\mathbf{R}_{n-1})$ are the bits in positions 32 and 1.

Example: We calculate $\mathbf{E}(\mathbf{R}_{\theta})$ from \mathbf{R}_{θ} as follows:

 $\mathbf{R}_{\theta} = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$ $\mathbf{E}(\mathbf{R}_{\theta}) = 011110\ 100001\ 010101\ 010101\ 011110\ 100001\ 010101\ 010101$

(Note that each block of 4 original bits has been expanded to a block of 6 output bits.)

Next in the f calculation, we XOR the output $\mathbf{E}(\mathbf{R}_{n-1})$ with the key \mathbf{K}_n :

 $K_n + \mathbf{E}(R_{n-1}).$

Example: For K_I , $\mathbf{E}(R_{\theta})$, we have

 $K_I = 000110\ 110000\ 001011\ 101111\ 111111\ 000111\ 000001\ 110010$ $\mathbf{E}(\mathbf{R}_{\theta}) = 011110\ 100001\ 010101\ 010101\ 011110\ 100001\ 010101\ 010101$ $K_I + \mathbf{E}(\mathbf{R}_{\theta}) = 011000\ 010001\ 011110\ 111010\ 100001\ 100110\ 010100\ 100111.$

We have not yet finished calculating the function f. To this point we have expanded R_{n-1} from 32 bits to 48 bits, using the selection table, and XORed the result with the key K_n . We now have 48 bits, or eight groups of six bits. We now do something strange with each group of six bits: we use them as addresses in tables called "S boxes". Each group of six bits will give us an address in a different S box. Located at that address will be a 4 bit number. This 4 bit number will replace the original 6 bits. The net result is that the eight groups of 6 bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32 bits total.

Write the previous result, which is 48 bits, in the form:

$$K_n + \mathbf{E}(R_{n-1}) = B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8,$$

where each B_i is a group of six bits. We now calculate

$$S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8)$$

where $S_i(B_i)$ referres to the output of the *i*-th **S** box.

To repeat, each of the functions S1, S2,..., S8, takes a 6-bit block as input and yields a 4-bit block as output. The table to determine S_1 is shown and explained below:

S1

Column Number

Row

No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

If S_I is the function defined in this table and B is a block of 6 bits, then $S_I(B)$ is determined as follows: The first and last bits of B represent in base 2 a number in the decimal range 0 to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits of B represent in base 2 a number in the decimal range 0 to 15 (binary 0000 to 1111). Let that number be j. Look up in the table the number in the i-th row and j-th column. It is a number in the range 0 to 15 and is uniquely represented by a 4 bit block. That block is the output $S_I(B)$ of S_I for the input B. For example, for input block B = 011011 the first bit is "0" and the last bit "1" giving 01 as the row. This is row 1. The middle four bits are "1101". This is the binary equivalent of decimal 13, so the column is column number 13. In row 1, column 13 appears 5. This determines the output; 5 is binary 0101, so that the output is 0101. Hence $S_I(011011) = 0101$.

The tables defining the functions $S_1,...,S_\delta$ are the following:

S₁

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Example: For the first round, we obtain as the output of the eight **S** boxes: $K_I + \mathbf{E}(R_\theta) = 011000\ 010001\ 011110\ 111010\ 100001\ 100110\ 010100\ 100111.$ $S_I(B_I)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8) = 0101\ 1100\ 1000\ 0010\ 1011\ 0101\ 1001\ 0111$

The final stage in the calculation of f is to do a permutation P of the S-box output to obtain the final value of f:

 $f = \mathbf{P}(S_1(B_1)S_2(B_2)...S_8(B_8))$

The permutation **P** is defined in the following table. **P** yields a 32-bit output from a 32-bit input by permuting the bits of the input block.

Example: From the output of the eight **S** boxes:

 $S_1(B_1)S_2(B_2)S_3(B_3)S_4(B_4)S_5(B_5)S_6(B_6)S_7(B_7)S_8(B_8) = 0101\ 1100\ 1000\ 0010\ 1011\ 0101\ 1001\ 0111$ we get

 $f = 0010\ 0011\ 0100\ 1010\ 1010\ 1001\ 1011\ 1011$

In the next round, we will have $L_2 = R_1$, which is the block we just calculated, and then we must calculate $R_2 = L_1 + f(R_1, K_2)$, and so on for 16 rounds. At the end of the sixteenth round we have the blocks L_{16} and R_{16} . We then *reverse* the order of the two blocks into the 64-bit block

$R_{16}L_{16}$

and apply a final permutation **IP**-1 as defined by the following table:

IP ⁻¹							
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8 as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the output.

Example: If we process all 16 blocks using the method defined previously, we get, on the 16th round,

 $L_{I6} = 0100\ 0011\ 0100\ 0010\ 0011\ 0010\ 0011\ 0100$ $R_{I6} = 0000\ 1010\ 0100\ 1100\ 1101\ 1001\ 1001\ 0101$

We reverse the order of these two blocks and apply the final permutation to

 $\mathbf{R}_{16}\mathbf{L}_{16} = 00001010\ 01001100\ 11011001\ 10010101\ 01000011\ 01000010\ 00110010$

 $IP^{-1} = 10000101 \ 11101000 \ 00010011 \ 01010100 \ 00001111 \ 00001010 \ 10110100 \ 00000101$

which in hexadecimal format is 85E813540F0AB405. This is the encrypted form of $\mathbf{M} = 0123456789ABCDEF$: namely, $\mathbf{C} = 85E813540F0AB405$.

Decryption is simply the inverse of encryption, following the same steps as above, but reversing the order in which the subkeys are applied.