prove
$$lim_{z\rightarrow 1}\frac{z^2-1}{z-1}=2$$

Solution

Let $\varepsilon > 0$, then we are prove that

$$|f(z)-w_0| when $|z-z_0|<\delta$, such that $z_0=1$ and $w_0=2$$$

$$\left| \frac{z^{2}-1}{z-1} - 2 \right| < \varepsilon$$
 when $|z-1| < \delta$

$$\left| \frac{(z-1)(z+1)}{z-1} - 2 \right| < \varepsilon \quad \text{when} \quad |z-1| < \delta$$

$$|z+1-2| < \varepsilon$$
 when $|z-1| < \delta$

$$|z-1| < \varepsilon$$
 when $|z-1| < \delta$

$$\varepsilon = \delta$$

Example:

prove
$$\lim_{z\to 2} 5z - 3 = 7$$

Solution

Let $\varepsilon > 0$, then we are prove that

$$|f(z) - w_0| < \varepsilon$$
 when $|z - z_0| < \delta$, such that $z_0 = 2$ and $w_0 = 7$

$$|5z - 3 - 7| < \varepsilon$$
 when $|z - 2| < \delta$

$$|5z - 10| < \varepsilon$$
 when $|z - 2| < \delta$

$$|5(z-2)| < \varepsilon$$
 when $|z-2| < \delta$

$$|z-2| < \frac{\varepsilon}{5}$$
 when $|z-2| < \delta$

$$\delta = \frac{\varepsilon}{5}$$

∴ the limit is satisfy

Example:

prove
$$\lim_{z\to 3} \frac{4z^2-36}{z-3} = 24$$

Solution

Let $\varepsilon > 0$, then we are prove that

 $|f(z)-w_0|<arepsilon$ when $|z-z_0|<\delta$, such that $z_0=3$ and $w_0=24$

 $\left|\frac{4z^2-36}{z-3}-24\right| < \varepsilon$ when $|z-3| < \delta$

 $\left| \frac{4(z-3)(z+3)}{z-3} - 24 \right| < \varepsilon$ when $|z-3| < \delta$ $|4z+12-24| < \varepsilon$ when $|z-3| < \delta$

 $|4z - 12| < \varepsilon$ when $|z - 3| < \delta$

 $|z-3| < \frac{\varepsilon}{4}$ when $|z-3| < \delta$

 $\delta = \frac{\varepsilon}{4}$

∴The limit is true

Example:

prove
$$\lim_{z\to 1} \frac{zi}{2} = \frac{i}{2}$$

Solution

Let $\varepsilon > 0$, then we are prove that

$$|f(z)-w_0|<\varepsilon$$

when
$$|z-z_0| < \delta$$
, such that $z_0 = 1$ and $w_0 = \frac{i}{2}$

$$\left|\frac{zi}{2} - \frac{i}{2}\right| < \varepsilon$$

when
$$|z-1| < \delta$$

$$\left|\frac{i}{2}(z-1)\right| < \varepsilon$$
 when $|z-1| < \delta$

$$|z-1|<\delta$$

$$\left|\frac{i}{z}\right||z-1| < \varepsilon$$
 when $|z-1| < \delta$

$$|z-1|<\delta$$

$$\frac{1}{2}|z-1| < \varepsilon$$
 when $|z-1| < \delta$

$$|z-1|<\delta$$

$$|z-1| < 2\varepsilon$$
 when $|z-1| < \delta$

$$|z-1| < \delta$$

$$\delta = 2\varepsilon$$

∴The limit is true

Example:

prove
$$\lim_{z\to 3i} \frac{z^2 5iz - 6}{z - 3i} = i$$

Solution

H.W

Prove the function $f(z) = \frac{z}{\bar{z}} \operatorname{don't}$ have limit at z = 0

Solution

Let z = (x, y), When z approaches to zero (x, y) approaches to zero we take two paths

z = (x, 0) and x approaches to 0, or z = (0, y) and y approaches to 0

When
$$z = (x, 0) \rightarrow y = 0$$

$$\lim_{\underbrace{(x,y)\to(0,y)}_{y=0}} f(z) = \lim_{\underbrace{(x,y)\to(0,y)}_{y=0}} \frac{z}{\bar{z}} = \lim_{\underbrace{(x,y)\to(0,y)}_{y=0}} \frac{x+yi}{x-yi} = \lim_{x\to 0} \frac{x}{x} = \boxed{1}$$

When
$$z = (0, y) \rightarrow x = 0$$

$$\lim_{\underbrace{(x,y)\to(x,0)}_{x=0}} f(z) = \lim_{\underbrace{(x,y)\to(x,0)}_{x=0}} \frac{z}{\bar{z}} = \lim_{\underbrace{(x,y)\to(x,0)}_{x=0}} \frac{x+yi}{x-yi} = \lim_{y\to 0} \frac{yi}{-yi} = \boxed{-1}$$

∴ the limit don't exists.

The continuity

the function f(z) is continuous at z_0 if the conditions satisfied

- I. $\lim_{z\to z_0} f(z)$ exist
- II. $f(z_0)$ exist
- III. $\lim_{z \to z_0} f(z) = f(z_0)$

is the function f continuous at z = -2i?

$$f(z) = \begin{cases} \frac{z^2 + 4}{z + 2i}, & z \neq -2i \\ -4i, & z = 2i \end{cases}$$

Solution

$$1 \lim_{z \to -2i} \frac{z^{2}+4}{z+2i} = \lim_{z \to -2i} \frac{(z+2i)(z-2i)}{z+2i}$$

$$\lim_{z \to -2i} z - 2i = -2i - 2i = -4i$$

2
$$f(-2i) = -4i$$

3
$$\lim_{z\to-2i} f(z) = f(z_0) = -4i$$

∴ the function is continuous at z = -2i

Example:

is the function f continuous at z = 3i?

$$f(z) = \begin{cases} \frac{2z^2 + 18}{z - 3i}, & z \neq 3i \\ 12i, & z = 3i \end{cases}$$

Solution

$$\mathbf{1} \quad f(3i) = 12i$$

$$\lim_{z \to 3i} \frac{2z^2 + 18}{z - 3i} = \lim_{z \to 3i} \frac{2(z^2 + 9)}{z - 3i}$$

$$\lim_{z \to 3i} \frac{2(z - 3i)(z - 3i)}{z - 3i} = 2(6i) = 12i$$

3
$$\lim_{z\to 3i} f(z) = f(z_0) = 12i$$

 \therefore the function is continuous at z = 3i

Example:

is the function f continuous at z = 3i?

$$f(z) = \begin{cases} \frac{z^2 - iz + 6}{z^2 - 9}, z \neq 3i \\ \frac{5}{6}, z = 3i \end{cases}$$

Solution

1
$$f(3i) = \frac{5}{6}$$

2
$$\lim_{z \to 3i} \frac{z^2 - iz + 6}{z^2 - 9}$$

$$\lim_{z \to 3i} \frac{(z-3i)(z+2i)}{(z-3i)(z+3i)} = \frac{5i}{6i} = \frac{5}{6}$$

3
$$\lim_{z\to 3i} f(z) = f(z_0) = \frac{5}{6}$$

 \therefore the function is continuous at z = 3i

Example:

is the function f continuous at z = -4i?

$$f(z) = \begin{cases} \frac{z^3 - 64i}{z + 4i}, & z \neq -4i\\ 48, & z = -4i \end{cases}$$

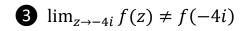
Solution

$$1 $f(-4i) = -64$$$

2
$$\lim_{z \to -4i} \frac{z^3 - 64i}{z + 4i}$$

$$= \lim_{z \to -4i} \frac{z^3 + 64i^3}{z + 4i}$$

$$= \lim_{z \to -4i} \frac{(z + 4i)(z^2 - 4zi - 16)}{(z + 4i)} = -16 - 16 - 16 = -48$$



 \therefore the function is not continuous at z = -4i

Example:

is the function f continuous at z = 2i?

$$f(z) = \begin{cases} \frac{2z^2 + 8}{z^2 - iz + 2}, & z \neq 2i \\ 8/3, & z = 2i \end{cases}$$

Solution

H.W

The Uniformly continuity

from the definition of continuity we note that δ depends on ε and z_0 if we can find δ such that δ depends only on ε and don't depends on $z_0 \in D$, then the fun. call it uniformly continuous in D then we can say

$$|f(z_2) - f(z_1)| < \varepsilon$$
 When $|z_2 - z_1| < \delta$

Example:

is the function $f(z) = z^2$ uniformly continuous at |z| < 1?

Solution

we shall prove for all $\varepsilon > 0$, $\exists z_1, z_2 \in D$ such that

$$|f(z_2) - f(z_1)| < \varepsilon$$
 When $|z_2 - z_1| < \delta$
 $|z_2^2 - z_1^2| < \varepsilon$ When $|z_2 - z_1| < \delta$
 $= |(z_2 - z_1)(z_2 + z_1)| < \varepsilon$ When $|z_2 - z_1| < \delta$

$$= |(z_1 + z_2)||(z_2 - z_1)| < \varepsilon$$
 When $|z_2 - z_1| < \delta$

$$\leq (|z_1| + |z_2|)|(z_2 - z_1)| < \varepsilon$$
 When $|z_2 - z_1| < \delta$

$$\leq (1+1)|(z_2-z_1)| < \varepsilon$$
 When $|z_2-z_1| < \delta$

$$\leq 2|(z_2-z_1)| < \varepsilon$$
 When $|z_2-z_1| < \delta$

$$\leq |(z_2 - z_1)| < \frac{\varepsilon}{2}$$
 When $|z_2 - z_1| < \delta$

$$|f(z_2) - f(z_1)| \le \frac{\varepsilon}{2}$$
 When $|z_2 - z_1| < \delta$

$$\delta = \frac{\varepsilon}{2}$$

∴ Uniformly Cont.

is the function $f(z) = z^3$ uniformly continuous at |z| < 2?

Solution

we shall prove for all $\varepsilon > 0$, $\exists z_1, z_2 \in D$ such that

$$|f(z_2) - f(z_1)| < \varepsilon$$

When
$$|z_2 - z_1| < \delta$$

$$|z_2^3 - z_1^3| < \varepsilon$$

When
$$|z_2 - z_1| < \delta$$

$$= |(z_2 - z_1)(z_2^2 + z_1z_2 + z_1^2)| < \varepsilon$$

When
$$|z_2 - z_1| < \delta$$

$$= |z_1 - z_2||z_2^2 + z_1z_2 + z_1^2| < \varepsilon$$

When
$$|z_2 - z_1| < \delta$$

$$\leq |(z_2 - z_1)(|z_2|^2 + |z_1||z_2| + |z_1|^2) < \varepsilon$$
 When $|z_2 - z_1| < \delta$

When
$$|z_2 - z_1| < \delta$$

$$\leq |(z_2 - z_1)|(4 + 4 + 4) < \varepsilon$$

When
$$|z_2 - z_1| < \delta$$

$$\leq 12|(z_2-z_1)|<\varepsilon$$

When
$$|z_2 - z_1| < \delta$$

$$\leq |(z_2 - z_1)| < \frac{\varepsilon}{12}$$

When
$$|z_2 - z_1| < \delta$$

$$|f(z_2) - f(z_1)| \le \frac{\varepsilon}{12}$$

When
$$|z_2 - z_1| < \delta$$

$$\delta = \frac{\varepsilon}{12}$$

∴ Uniformly Continuous

Example:

is the function $f(z) = \frac{1}{z}$ uniformly continuous at |z| < 1?

Solution

we shall prove for all $\varepsilon > 0$, $\exists z_1, z_2 \in D$ such that

$$|f(z_2) - f(z_1)| < \varepsilon$$
 When $|z_2 - z_1| < \delta$

$$\left|\frac{1}{z_2} - \frac{1}{z_1}\right| < \varepsilon$$
 When $|z_2 - z_1| < \delta$

$$=\left|\frac{z_1-z_2}{z_1z_2}\right| When $|z_2-z_1|<\delta$$$

$$= |z_1 - z_2| > \varepsilon$$
 When $|z_2 - z_1| < \delta$

$$= |z_2 - z_1| > \varepsilon$$
 When $|z_2 - z_1| < \delta$

we note that no relation between ε , δ

: the fun. Is not Uniformly Continuous

Example:

is the function f(z) = 3z - 2 uniformly continuous at |z| < 5?

Solution

H.W