Harmonic function

a real valued function h(x, y) of two real variable x and y is said to be harmonic in a given domain of xy- plane If through that domain it has a continuous first & Second partial derivatives and satisfies Laplace equation

$$\nabla^2 h = \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = 0$$

Theorem:

if f(z) = u(x, y) + i v(x, y) is analytic in a region D , then two functions u & v are harmonic?

Proof

since f(z) is analytic then C.R.E are satisfied for all z in domain D.

$$u_x = v_v$$
(1)

$$u_{v} = -v_{x}$$
(2)

By differentiating both sides in (1)&(2) respect to x we get

Also differentiating both sides in (1)&(2) respect to y we get

$$u_{xy} = v_{yy} u_{yy} = -v_{xy} (4)$$

Since
$$u_{xy} = u_{yx}$$
 & $v_{xy} = v_{yx}$

we get from (3)&(4)

$$v_{yy} = -v_{xx} \& u_{yy} = -u_{xx}$$

$$v_{yy} + v_{xx} = 0$$
 & $u_{yy} + u_{xx} = 0$

$$\therefore \nabla^2 u = 0 \quad \& \quad \nabla^2 v = 0$$

u & v are harmonic

Note

the converse of theorem is not true

Example

prove that $f(z) = 2xy + i(x^2 - y^2)$ is harmonic But not analytic.

Solution

$$u(x,y) = 2xy \qquad v(x,y) = x^2 - y^2$$

$$u_x = 2y$$
 $v_y = -2y$

$$u_y = 2x$$
 $v_x = 2x$

C.R.E don't satisfied

Then the function not analytic

$$u_{xx} = 0$$
 $u_{yy} = 0$

$$v_{xx} = 2$$
 $v_{yy} = -2$

$$\nabla^2 u = u_{xx} + u_{yy} = 0 + 0 = 0$$

$$\nabla^2 v = v_{xx} + v_{yy} = 2 - 2 = 0$$

The function f(z) is harmonic.

Example

is the function u = sinx cosy is harmonic?

Solution

$$u_x = \cos x \cos y$$

$$u_{xx} = -sinx cosy$$

 $u_v = -\sin x \sin y$

$$u_{yy} = -\sin x \cos y$$

$$u_{xx} + u_{yy} = -\sin x \cos y - \sin x \cos y \neq 0$$

u is not harmonic

Example

is the function $u = e^{-x}(x \sin y - y \cos y)$ is harmonic?

Solution

$$u = xe^{-x} \sin y - e^{-x}y \cos y$$

$$u_x = siny[-xe^{-x} + e^{-x}] + e^{-x}y \cos y$$

$$u_{xx} = \sin y [xe^{-x} - e^{-x} - e^{-x}] - e^{-x}y \cos y$$

$$u_{xx} = xe^{-x}siny - 2e^{-x}siny - e^{-x}y cosy$$
(1)

$$u_y = xe^{-x}\cos y - e^{-x}(-y\sin y + \cos y)$$

$$u_{yy} = -xe^{-x}\sin y - e^{-x}(-y\cos y - \sin y - \sin y)$$

$$u_{yy} = -xe^{-x} \sin y + e^{-x}y \cos y + 2e^{-x} \sin y$$
(2)

$$\nabla^2 u = u_{xx} + u_{yy}$$

$$= xe^{-x}siny - 2e^{-x}siny - e^{-x}y cosy - xe^{-x}siny + e^{-x}y cosy + 2e^{-x}siny$$

$$\nabla^2 u = 0$$

u is harmonic

is the function $f(z) = \ln|z|^2$ is harmonic?

Solution

$$f(z) = ln|z|^2 = ln(x^2 + y^2)$$

$$f_x = \frac{2x}{x^2 + y^2}$$

$$f_{xx} = \frac{2(x^2 + y^2) - 2x \cdot 2x}{(x^2 + y^2)^2} = \frac{2y^2 - 2x^2}{(x^2 + y^2)^2}$$

$$f_y = \frac{2y}{x^2 + y^2}$$

$$f_{yy} = \frac{2(x^2 + y^2) - 2y \cdot 2y}{(x^2 + y^2)^2} = \frac{2x^2 - 2y^2}{(x^2 + y^2)^2}$$

$$\nabla^2 f = f_{xx} + f_{yy} = \frac{2y^2 - 2x^2}{(x^2 + y^2)^2} + \frac{2x^2 - 2y^2}{(x^2 + y^2)^2} = 0$$

 $\therefore f$ is harmonic

Example

is the function $T(x, y) = e^{-y} \sin x$ is harmonic?

Solution

$$T_x = e^{-y}\cos x \quad \rightarrow \quad T_{xx} = -e^{-y}\sin x$$

$$T_y = -e^{-y} \sin x \quad \rightarrow \quad T_{yy} = e^{-y} \sin x$$

$$\nabla^2 T = T_{xx} + T_{yy} = -e^{-y} \sin x + e^{-y} \sin x = 0$$

∴ T is harmonic.

The function $f(z) = e^{-y} \sin x - i e^{-y} \cos x$ is entire, show that the component function u and v are harmonic in its domain D.

Solution

The function $f(z)=\frac{i}{z^2}$ is analytic whenever $z\neq 0$, then the two functions $u\otimes v$ are harmonic throughout any domain in the xy- plane that doesn't contain the origin .

Solution

Harmonic Conjugate

- \diamond if two given functions u and v are harmonic in a domain D and there is order partial derivatives satisfy the C.R.E throughout D, then v is said to be harmonic conjugate for u
- \diamond a function f(z) = u(x,y) + i v(x,y) is analytic in a domain D iff v is harmonic conjugate of u.
- \diamond if v is harmonic conjugate of u in some domain, it is not in general true that u is a harmonic conjugate of v.
- \diamond when give u is harmonic function and ask. To find the analytic function F, this mean that we will find the harmonic conjugate v

Example

Find the harmonic conjugate function v for a harmonic function $u = y^3 - 3x^2y$

Solution

since a harmonic conjugate function v(x, y) is related to u(x, y), then by C.R.E

$$u_x = v_y$$
 , $u_y = -v_x$

$$u_x = -6xy$$

$$v_y = -6xy$$
 , by integral respect to y

$$v = -3xy^2 + \emptyset(x)$$
(1)

diff. (1) respect to x

$$v_x = -3y^2 + \emptyset'(x)$$
(2)

but
$$v_x = -u_y = -(3y^2 - 3x^2)$$

$$v_x = 3x^2 - 3y^2 \dots (3)$$

Sub. (3) in (2)

$$3x^2 - 3y^2 = -3y^2 + \emptyset'(x) \rightarrow \emptyset'(x) = 3x^2$$

$$\emptyset(x) = \int \emptyset'(x) dx = \int 3x^2 dx = x^3 + c$$

From (1) we get

$$v(x,y) = -3xy^2 + x^3 + c$$

and the analytic function is

$$f(z) = (y^3 - 3x^2y) + i(-3xy^2 + x^3 + c)$$

Example

Find the harmonic conjugate function v for u = 2x(1 - y)

Solution

$$u_x = 2(1-y) \rightarrow u_{xx} = 0$$

$$u_y = -2x$$
 $\rightarrow u_{yy} = 0$

$$u_{xx} + u_{yy} = 0$$

 $\therefore u$ is not harmonic.

$$u_x = v_y \rightarrow v_y = 2(1-y)$$
 by $\int dy$

$$v = 2y - y^2 + \emptyset(x)$$
(1)

diff.(1) respect to x

$$v_x = \emptyset'(x)$$

But
$$v_x = -u_y = 2x$$

$$2x = \emptyset'(x) \rightarrow \emptyset(x) = x^2 + c$$

$$v(x,y) = 2y - y^2 + x^2 + c$$

Find the harmonic conjugate function $\, v \,$, if

I. $u = 2x - x^3 + 3xy^2$

II. $u = \sinh x \sin y$

III. $u = \frac{y}{x^2 + y^2}$

Solution

prove that $u(x, y) = e^x \cos y$ is harmonic function and find harmonic conjugate

Solution

$$u_x = e^x \cos y \qquad \rightarrow \quad u_{xx} = e^x \cos y$$

$$u_y = -e^x \sin y \quad \rightarrow \quad u_{yy} = -e^x \cos y$$

$$u_{xx} + u_{yy} = e^x \cos y - e^x \cos y = 0$$

 $\therefore u$ is harmonic

$$u_x = v_y \rightarrow v_y = e^x \cos y$$
 by $\int dy$

$$v = e^x \sin y + \emptyset(x)$$
(1)

diff.(1) respect to x

$$v_x = e^x \sin y + \emptyset'(x)$$

but
$$v_x = -u_y = e^x \sin y$$

$$e^x \sin y = e^x \sin y + \emptyset'(x) \rightarrow \emptyset'(x) = 0 \rightarrow \emptyset(x) = C$$

$$v(x,y) = e^x \sin y + C$$

Theorem:

if $\,v_1\&\,v_2$ are two harmonic conjugate to a function ${\bf u}$ in the region ${\bf D}$, then they are different by a constant

Proof

Since v_1 is harmonic conjugate to u

$$f(z) = u + iv_1$$
 is analytic

$$u_x = v_1 y$$
 & $u_y = -v_1 x$ (1)

Also Since v_2 is harmonic conjugate to u

$$f(z) = u + iv_2$$
 is analytic

$$u_x = v_2 y$$
 & $u_y = -v_2 x$ (2)

from (1)& (2) we get

$$v_1 y = v_2 y$$
 by $\int dy$

$$v_1 = v_2 + C$$

$$v_1 - v_2 = C$$

Simple Curves & Orthogonal Curves

if the function f(z) contain two components u & v then we said to the set of functions u & v that is Simple curves f(x,y) = c, and this curves be orthogonal if the multiply of the slope of them is (-1)

Note: the slope is the 1st derivative: $m = \frac{dy}{dx}$

Example

Find the simple curves and prove it is orthogonal: $f(z) = z^2 + 5zi + 3 - i$

Solution

$$f(x,y) = (x^2 - y^2 - 5y + 3) + i(2xy + 5x - 1)$$

$$u = x^2 - y^2 - 5y + 3 \rightarrow x^2 - y^2 - 5y = -3$$
 is simple curve

$$v = 2xy + 5x - 1 \rightarrow 2xy + 5x = 1$$
 is simple curve

the functions u & v are simple curves to prove the orthogonality we will find the slope to the fun curves

$$m_1: 2x - 2y \frac{dy}{dx} - 5 \frac{dy}{dx} + 0 = 0$$

$$\frac{dy}{dx}(-2y-5) = -2x$$

$$\frac{dy}{dx} = \frac{2x}{2y+5} = m_1 \ (1st \ slope)$$

$$m_2: 2x\frac{dy}{dx} + 2y + 5 - 0 = 0$$

$$\frac{dy}{dx} = \frac{-2y-5}{2x} = m_2$$
 2nd slope

$$m_1 m_2 = \frac{2x}{2y+5} \frac{-2y-5}{2x} = -1$$

u & v orthogonal curves

Polar Coordinates

$$z = x + yi$$
 or $z = re^{i\theta}$ $(z \neq 0)$

$$z = r \cos \theta + ir \sin \theta$$

$$x = r \cos \theta$$
 , $y = r \sin \theta$ (1)

$$f(z) = u(x, y) + iv(x, y)$$

we will transform by r, θ i.e

$$f(z) = u(r,\theta) + iv(r,\theta)$$

then the 1st derivatives of u & v with respect to r and θ , and by chain rule

$$\frac{du}{dr} = \frac{du}{dx}\frac{dx}{dr} + \frac{du}{dy}\frac{dy}{dr}$$

$$\frac{du}{d\theta} = \frac{du}{dx} \frac{dx}{d\theta} + \frac{du}{dy} \frac{dy}{d\theta}$$

Can write as

$$u_r = u_x \cos \theta + u_y \sin \theta$$

$$u_{\theta} = -u_x r \sin \theta + u_y r \cos \theta$$

$$u_r = u_x \cos \theta + u_y \sin \theta$$

$$u_\theta = r[-u_x \sin \theta + u_y \cos \theta]$$
 \rightarrow \ldots \l

Like wise

$$v_r = v_x \cos \theta + v_y \sin \theta$$

$$v_{\theta} = -v_{x}r\sin\theta + v_{y}r\cos\theta$$

$$v_r = v_x \cos \theta + v_y \sin \theta$$

$$v_\theta = r[-v_x \sin \theta + v_y \cos \theta]$$
\bigcap \ldots \ldots

if partial derivatives of u and v with respect to x and y also satisfy C.R.E

$$u_x = v_v \& u_v = -v_x (4)$$

eq. (3) becomes

$$v_r = -u_y \cos \theta + u_x \sin \theta v_\theta = r[u_y \sin \theta + u_x \cos \theta]$$
(5)

From (2) & (5) we get

$$v_{\theta} = r u_r$$
 & $u_{\theta} = -r v_r$ (6)

Eq(6) called C.R.E in polar coordinates

Theorem:

let the function $f(\mathbf{z}) = u(r,\theta) + iv(r,\theta)$ be defined throughout some ϵ neighbourhood anon point to \mathbf{z}_0 , and suppose that :

1- the 1st order partial derivatives of the functions u and v with respect to r and θ exists every where in the neighbourhood

2- these partial derivatives are continuous at $(r_0$, $\theta_0)$ and satisfy the polar form; $v_\theta=ru_r$ & $u_\theta=-rv_r$, Then f'(z) exists and its value is

$$f'(\mathbf{z}) = e^{-i\theta}(u_r + iv_r) \dots \dots \dots \dots (1)$$

$$f'(\mathbf{z}) = \frac{ie^{-i\theta}}{r}(u_{\theta} + iv_{\theta}) \dots \dots \dots \dots (2)$$

Proof

$$f(z) = u(x,y) + iv(x,y)$$
 , $z = re^{i\theta}$

$$f(z) = u(r, \theta) + iv(r, \theta)$$

Diff. respect to r

$$f'(z)\frac{dz}{dr} = u_r + iv_r$$

$$f'(z)e^{i\theta} = u_r + iv_r$$

$$\therefore f'(z) = e^{-i\theta}(u_r + iv_r)$$

$$f(z) = u(x, y) + iv(x, y)$$
 , $z = re^{i\theta}$

$$f(z) = u(r,\theta) + iv(r,\theta)$$

Diff. respect to θ

$$f'(z)\frac{dz}{d\theta} = u_{\theta} + iv_{\theta}$$

$$f'(z) ire^{i\theta} = u_{\theta} + iv_{\theta}$$

$$f'(z) = \frac{e^{-i\theta}}{ir}(u_{\theta} + iv_{\theta}) = \frac{-ie^{-i\theta}}{r}(u_{\theta} + iv_{\theta})$$

Example

Find the derivative of $f(z) = \frac{1}{z}$ in polar form

Solution

$$f(z) = \frac{1}{z} = \frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta}$$

$$= \frac{1}{r} [\cos \theta - i \sin \theta]$$

$$= \frac{1}{r} \cos \theta - i \frac{1}{r} \sin \theta$$

$$u = \frac{1}{r} \cos \theta \qquad , \qquad v = -\frac{1}{r} \sin \theta$$

$$u_r = \frac{-1}{r^2} \cos \theta \qquad , \qquad v_r = \frac{1}{r^2} \sin \theta$$

$$u_\theta = \frac{-1}{r} \sin \theta \qquad , \qquad v_\theta = \frac{-1}{r} \cos \theta$$

$$\therefore f'(z) = e^{-i\theta} (u_r + iv_r)$$

$$= e^{-i\theta} \left(\frac{-1}{r^2} \cos \theta + i \frac{1}{r^2} \sin \theta \right)$$

$$= \frac{-e^{-i\theta}}{r^2} (\cos \theta - i \sin \theta)$$

$$= \frac{-e^{-2i\theta}}{r^2} = \frac{-1}{r^2 e^{2i\theta}} = \frac{-1}{(re^{i\theta})^2} = -\frac{1}{z^2}$$

Another method

$$\begin{split} f'(z) &= \frac{-ie^{-i\theta}}{r} (u_{\theta} + iv_{\theta}) \\ &= \frac{-ie^{-i\theta}}{r} \Big[\frac{-1}{r} \sin \theta - \frac{i}{r} \cos \theta \Big] \\ &= \frac{e^{-i\theta}}{r^2} (i \sin \theta - \cos \theta) = -\frac{e^{-2i\theta}}{r^2} = -\frac{1}{r^2 e^{2i\theta}} = \frac{-1}{(re^{i\theta})^2} = -\frac{1}{z^2} \end{split}$$

Consider the function $g(z)=\sqrt{r}e^{i\frac{\theta}{2}}$, show that g(z) has a derivative at each point in its domain and $g'(z)=\frac{1}{2g(z)}$

Solution

$$g(z) = r^{\frac{1}{2}}(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2})$$
$$= r^{\frac{1}{2}}\cos\frac{\theta}{2} + ir^{\frac{1}{2}}\sin\frac{\theta}{2}$$

$$u=r^{rac{1}{2}}cosrac{ heta}{2}$$
 , $v=r^{rac{1}{2}}sinrac{ heta}{2}$

$$u_r=rac{1}{2}r^{-rac{1}{2}}cosrac{ heta}{2}$$
 , $v_ heta=rac{1}{2}r^{rac{1}{2}}cosrac{ heta}{2}$

$$u_{ heta}=-rac{1}{2}r^{rac{1}{2}}sin\, heta$$
 , $v_{r}=rac{1}{2}r^{-rac{1}{2}}sinrac{ heta}{2}$

$$\therefore g'(z)$$
 exists

$$g'(z) = e^{-i\theta} (u_r + iv_r)$$

$$= e^{-i\theta} (\frac{1}{2} r^{-\frac{1}{2}} \cos \frac{\theta}{2} + i \frac{1}{2} r^{-\frac{1}{2}} \sin \frac{\theta}{2})$$

$$= e^{-i\theta} \frac{1}{2\sqrt{r}} (\cos \frac{\theta}{2} + i \sin \frac{\theta}{2})$$

$$= e^{-i\theta} \frac{1}{2\sqrt{r}} (\cos \frac{\theta}{2} + i \sin \frac{\theta}{2})$$

$$= e^{-i\theta} \frac{1}{2\sqrt{r}} e^{\frac{i\theta}{2}}$$

 $g'(z) = \frac{1}{2\sqrt{r}e^{i\frac{\theta}{2}}} = \frac{1}{2g(z)}$

Verify C.R.E and f'(z) by polar

$$1-f(z)=\sqrt[3]{r}e^{i\frac{\theta}{3}}$$

2-
$$f(z) = \frac{1}{z^4}$$
 , $(z \neq 0)$

Solution

write Laplace equation in polar form

Solution

from C.R.E

$$v_{\theta} = ru_r \dots \dots \dots (1)$$

$$u_{\theta} = -rv_r \dots \dots (2)$$

Diff (1) respect to r & (2) respect to θ

$$r u_{rr} + u_r = v_{\theta r} \dots \dots \dots (3)$$

$$-r v_{r\theta} = u_{\theta\theta} \dots \dots \dots \dots (4)$$

$$v_{\theta r} = v_{r\theta} = \frac{-1}{r} u_{\theta\theta}$$
, sub. in (3)

$$ru_{rr} + u_r = \frac{-1}{r}u_{\theta\theta}$$

mult. By r

$$r^2 u_{rr} + r u_r + u_{\theta\theta} = 0 \dots (A)$$

To find v:

Diff (1) respect to θ & (2) respect to r

$$ru_{r\theta} = v_{\theta\theta} \dots \dots \dots \dots \dots (5)$$

$$-rv_{rr}-v_r=u_{\theta r}\dots\dots(6)$$

$$: u_{\theta r} = u_{r\theta} = \frac{1}{r} v_{\theta \theta}$$

$$-rv_{rr} - v_r = \frac{1}{r}v_{\theta\theta}$$
 mult. By $-r$

$$r^2 v_{rr} + r v_r + v_{\theta\theta} = 0 \dots \dots \dots (B)$$

Eq.(A) & (B) called Laplace eq. in polar form.

$$r^2 u_{rr} + r u_r + u_{\theta\theta} = 0$$
$$r^2 v_{rr} + r v_r + v_{\theta\theta} = 0$$

Show that the function $f(z) = z^2 - 3 + i$ satisfy Laplace equation in polar form

Solution

$$\begin{split} f(r,\theta) &= r^2 \cos(2\theta) + i \, r^2 sin(2\theta) - 3 + i \\ u(r,\theta) &= r^2 \cos(2\theta) - 3 \quad , \quad v(r,\theta) = r^2 sin(2\theta) + 1 \\ u_r &= 2r cos(2\theta) \quad , \quad u_{rr} = 2r cos(2\theta) \\ u_\theta &= -2r^2 \cos(2\theta) \quad , \quad u_{\theta\theta} = -2r^2 \sin(2\theta) \\ v_r &= 2r sin(2\theta) \quad , \quad u_{rr} = 2sin(2\theta) \\ v_\theta &= 2r^2 \cos(2\theta) \quad , \quad v_{\theta\theta} = -4r^2 \sin(2\theta) \\ r^2 u_{rr} + r u_r + u_{\theta\theta} = 0 \\ 2r^2 \cos(2\theta) + 2r^2 \cos(2\theta) - 4r^2 \cos(2\theta) = 0 \end{split}$$

$$r^2 v_{rr} + r v_r + v_{\theta\theta} = 0$$

$$2r^2 \sin(2\theta) + 2r^2 \sin(2\theta) - 4r^2 \sin(2\theta) = 0$$

then satisfy Laplace equation in polar coordinates

Example

Show that $f(z) = 2z^2 - 5z + 2 - 4i$ satisfy Laplace equation in polar form

Solution

