

4. Inversion

a complex transformation inversion is a map from z-plane to w-plane of the from $z \to \frac{1}{z}$ or $f(z) = \frac{1}{z}$, where z is a complex variable, when the number z having modulus is r and argument is θ , the inverse $\frac{1}{z}$ having modulus $\frac{1}{r}$ and argument $(-\theta)$

$$z = x + yi$$
, $z = re^{i\theta}$ $\begin{cases} mod = r \\ arg = \theta \end{cases}$

find the image of the circle $x^2 + y^2 = 4y$ under the trans formation $w = \frac{1}{x}$

Solution

$$let w = \frac{1}{z} \quad , z = x + yi \quad , w = u + iv$$

$$u + vi = \frac{1}{x + vi} \rightarrow x + yi = \frac{1}{u + iv} \cdot \frac{u - iv}{u - iv}$$

$$x + yi = \frac{u - iv}{u^2 + v^2}$$
, $x + yi = \frac{u}{u^2 + v^2} - i\frac{v}{u^2 + v^2}$

$$x = \frac{u}{u^2 + v^2} \qquad y = \frac{-v}{u^2 + v^2}$$

now:
$$x^2 + y^2 = 4y$$

$$\frac{u^2}{(u^2+v^2)^2} + \frac{v^2}{(u^2+v^2)^2} = \frac{-4v}{u^2+v^2}$$

$$\frac{u^2 + v^2}{(u^2 + v^2)^2} = \frac{-4v}{u^2 + v^2} \rightarrow -4v = 1 \rightarrow v = \frac{-1}{4} \text{ [in w-plane]}$$

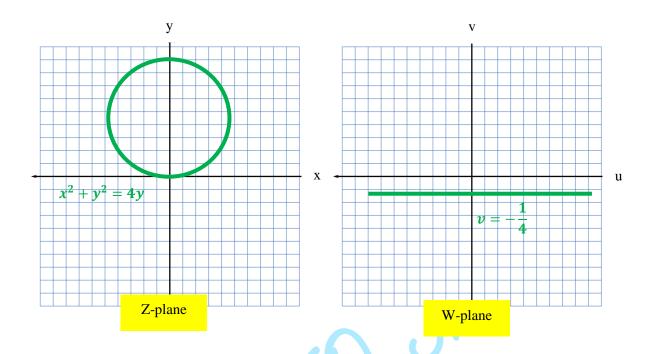
to graph the function in z-plane

$$x^2 + y^2 = 4y$$

$$x^2 + y^2 = 4y$$
$$x^2 + y^2 - 4y = 0$$

$$x^2 + y^2 - 4y + 4 = 0 + 4$$

$$x^2 + (y - 2)^2 = 4$$
 , is circle with center is (0,2) and radius is 2



Find the image of the line y - x + 1 = 0 under the inverse transformation.

$$let w = \frac{1}{z} \quad , z = x + yi \quad , w = u + iv$$

$$u + vi = \frac{1}{x + yi}$$
 \rightarrow $x + yi = \frac{1}{u + iv} \cdot \frac{u - iv}{u - iv}$

$$x + yi = \frac{u - iv}{u^2 + v^2}$$
, $x + yi = \frac{u}{u^2 + v^2} - i\frac{v}{u^2 + v^2}$

$$x = \frac{u}{u^2 + v^2} \qquad y = \frac{-v}{u^2 + v^2}$$

now:
$$y - x + 1 = 0$$

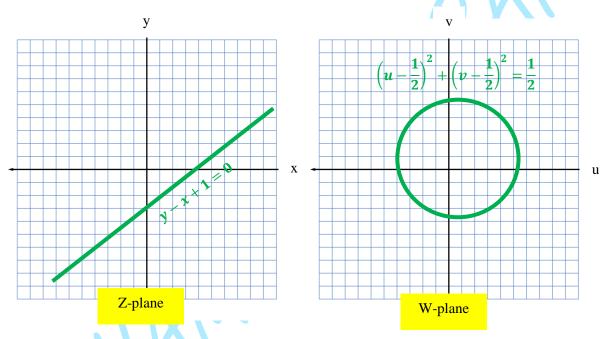
$$\frac{-v}{u^2 + v^2} - \frac{u}{u^2 + v^2} + 1 = 0$$

$$-v - u + u^2 + v^2 = 0$$

$$u^2 - u + \frac{1}{4} + v^2 - v + \frac{1}{4} = \frac{1}{4} + \frac{1}{4}$$

$$\left(u - \frac{1}{2}\right)^2 + \left(v - \frac{1}{2}\right)^2 = \frac{1}{2}$$

the graph in w-plane represent a circle with center is $(\frac{1}{2}, \frac{1}{2})$ and radius is $\frac{1}{\sqrt{2}}$



Example

Find the image of the ∞ – strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{z}$

$$w = \frac{1}{z} , \quad w = u + iv , \quad z = x + yi$$

$$u + iv = \frac{1}{x + yi} \longrightarrow x + yi = \frac{1}{u + iv} \cdot \frac{u - iv}{u - iv}$$

COMPLEX ANALYSIS

4TH STAGE

(2023-2024)

$$x + yi = \frac{u - iv}{u^2 + v^2} \rightarrow \begin{bmatrix} x = \frac{u}{u^2 + v^2} \\ y = \frac{-v}{u^2 + v^2} \end{bmatrix}$$

$$y = \frac{1}{4} \longrightarrow \frac{-v}{u^2 + v^2} = \frac{1}{4} \longrightarrow u^2 + v^2 = -4v$$

$$u^2 + v^2 + 4v + 4 = 0 + 4$$

$$(u)^2 + (v+2)^2 = 4$$

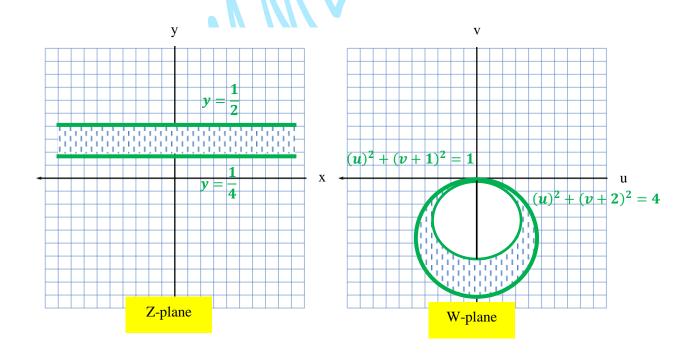
the eq. $y = \frac{1}{4}$ in z-plane represent a circle with center (0,-2) and radius is 2 in w-plane

$$y = \frac{1}{2} \longrightarrow \frac{-v}{u^2 + v^2} = \frac{1}{2} \longrightarrow u^2 + v^2 = -2v$$

$$u^2 + v^2 + 2v + 1 = 0 + 1$$

$$(u)^2 + (v+1)^2 = 1$$

the eq. $y = \frac{1}{2}$ in z-plane represent a circle with center (0,-1) and radius is 1 in w-plane

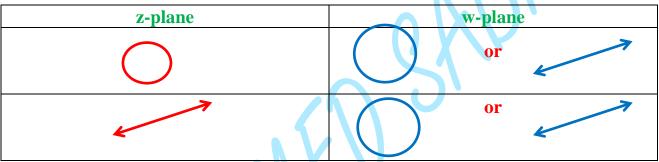


Theorem 1

the transformation $w=\frac{1}{z}$ maps the circle in z- plane to a circle in w- plane or a straight line if the circle passes at origin .

Theorem 2

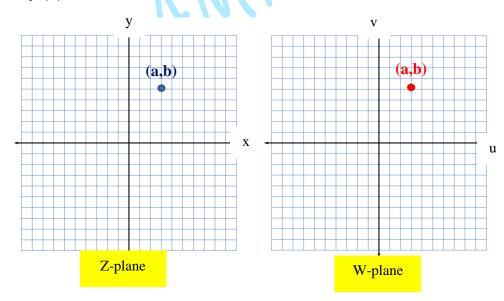
the transformation $w=\frac{1}{z}$ maps a line in z- plane to a circle or straight line in w- plane



Invariant point (fixed)

its point which coincide with their transfe y tion are called fixed or invariant points

$$w = f(z) = z$$



find the invariant point to

Solution

1.
$$w = \frac{z-1}{z+1}$$

$$w = f(z) = z$$

$$z = \frac{z-1}{z+1} \rightarrow z^2 + z = z - 1$$

$$z^2 = -1 \rightarrow z = \overline{+}i$$
To check sub. $(i, -i)$ in $w = \frac{z-1}{z+1}$

2.
$$w = \frac{3z-4}{z-1}$$

 $\because w = f(z) = z$
 $z = \frac{3z-4}{z-1} \rightarrow z^2 + z = 3z - 4$
 $z^2 - 4z + 4 = 0 \rightarrow (z-2)^2 = 0 \rightarrow z = 2$

Linear Transformation

a combination of transformations! Transition, Rotation and magnification is called Linear transformation, and the form of it:

$$w = \alpha z + \beta$$
 where $\alpha, \beta \in \mathbb{C}$

Example

consider the linear transformation $w=(1+i)\,z+(2-i)$, determine and sketch the region in w-plane into which the rectangular region bounded by the lines x=0, y=0, x=1, y=2, in the z-plane is mapped

 $let w = u + iv \qquad z = x + yi$

$$w = (1+i)z + (2-1)$$

$$u + iv = (1+i)(x+yi) + (2-1)$$

$$= x + yi + xi - y + 2 - i$$

$$u + iv = x - y + 2 + i(x + y - 1)$$

$$u = x - y + 2$$

$$v = x + y - 1$$

$$u = x - y + 2$$
(1)

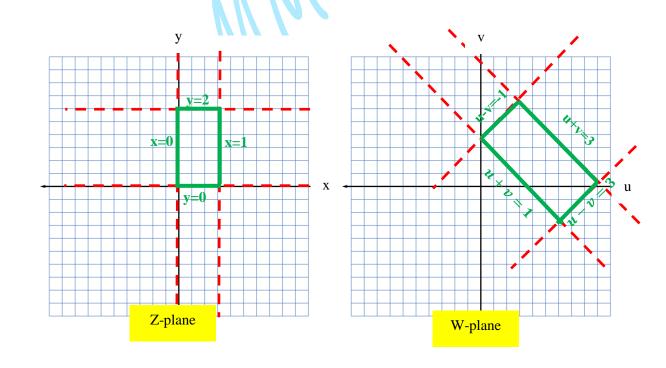
$$v = x + y - 1$$
(2)

$$u + v = 2x + 1$$
(3) [by add 1 to 2]

$$u - v = 3 - 2y$$
(4) [by difference 2 from 1]

$$x - plane:$$
 $x = 0$, $y = 0$, $x = 1$, $y = 2$

$$z - plane: u + v = 1$$
 , $u - v = 3$, $u + v = 3$, $u - v = -1$



Determine the linear transformation that map the rectangle

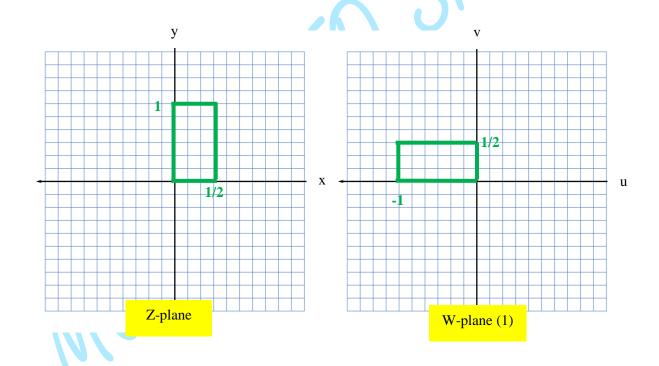
$$z_1=0$$
 , $z_2=rac{1}{2}$, $z_3=i$, $z_4=rac{1}{2}+i$ Onto the rectangle

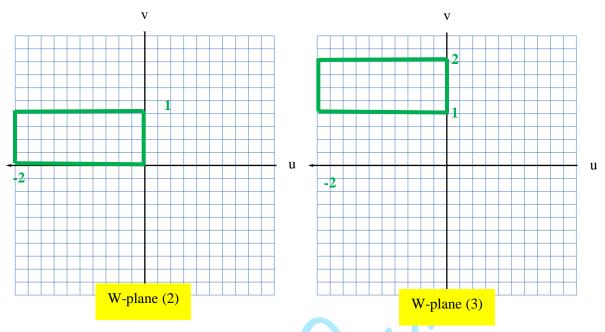
$$w_1 = i$$
 , $w_2 = 2i$, $w_3 = -2 + i$, $w_4 = -2 + 2i$

$$z - plane : z_1(0,0) , z_2(\frac{1}{2},0) , z_3(0,1) , z_4(\frac{1}{2},1)$$

$$w - plane : w_1(0,1) , w_2(0,2) , w_3(-2,1) , w_4(-2,2)$$

$$z-plane: u+v=1$$
 , $u-v=3$, $u+v=3$, $u-v=-1$





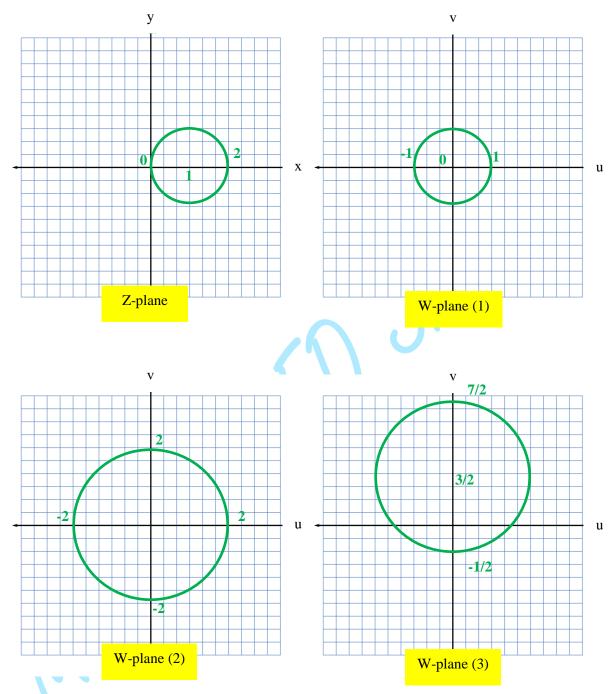
$$f_1: z-plane \rightarrow w-plane(1)$$
, such that $f_1(z)=e^{i\frac{\pi}{2}z}=iz$
 $f_2: w-plane(1) \rightarrow w-plane(2)$, such that $f_2(z)=2(iz)=2iz$
 $f_3: w-plane(2) \rightarrow w-plane(3)$, such that $f_3(z)=(2iz)+i$

Determine the linear transformation that map the circle $C_1:|z-1|=1$ in z-plane onto the circle $C_2:\left|z-\frac{3}{2}i\right|=2$ on w-plane

Solution

 \mathcal{C}_1 is represent a circle with center is (1,0) and radius is 1 while

 C_2 is represent a circle with center is $(0, \frac{3}{2})$ and radius is 2



$$f_1: z - plane \rightarrow w - plane(1)$$
, such that $f_1(z) = z - 1$

$$f_2$$
: $w-plane(1) \rightarrow w-plane(2)$, such that $f_2(z)=2(z-1)=2z-2$

$$f_3$$
: $w - plane(2) \rightarrow w - plane(3)$, such that $f_3(z) = (2z - 2) + \frac{3}{2}i$

Bi-linear transformation

a combination of a transformations: transation, rotation, magnification and inversion are called bilinear transformation.

Theorem

the transformation of the form $\mathbf{w} = \frac{az+b}{cz+d}$ is called a bilinear or fractional or mobious transformation when $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{C}$ and $\mathbf{a}\mathbf{d} - \mathbf{b}\mathbf{c} \neq \mathbf{0}$

Theorem

the bilinear transformation $\mathbf{w} = \frac{az+b}{cz+d}$ is a combination of elementary transformation.

Theorem

if bilinear transformation transform the point z_1, z_2, z_3 in z - plane to the point w_1, w_2, w_3 in the w - plane then:

$$\frac{(w-w_1)(w_2-w_3)}{(w_1-w_2)(w_3-w)} = \frac{(z-z_1)(z_2-z_3)}{(z_1-z_2)(z_3-z)}$$

Example

Show that the transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 - 4x = 0$ in the z-plane into the straight line 4u + 3 = 0 in the w-plane.

$$w = \frac{2z+3}{z-4} \to w(z-4) = 2z+3$$

$$wz - 4w = 2z + 3$$

$$z(w-2) = 4w + 3 \rightarrow \boxed{z = \frac{4w+3}{w-2}}$$
 1

$$x^2 + y^2 - 4x = 0$$

$$x^2 - 4x + 4 + y^2 = 0 + 4$$

$$(x-2)^2 + y^2 = 4$$
 this represent

$$|z-2|=2$$
2

sub. **1** in **2**

$$\left| \frac{4w+3}{w-2} - 2 \right| = 2$$

$$\left| \frac{4w+3-2w+4}{w-2} \right| = 2 \rightarrow \left| \frac{2w+7}{w-2} \right| = 2$$

$$|2w + 7| = 2|w - 2|$$
 , $w = u + iv$

$$w = u + iv$$

$$|2(u+iv) + 7| = 2|u+iv-2|$$

$$|2u + 7 + 2iv| = 2|u - 2 + iv|$$

$$\sqrt{(2u+7)^2 + (2v)^2} = 2\sqrt{(u-2)^2 + v^2}$$
sides

$$(2u + 7)^2 + 4v^2 = 4((u - 2)^2 + v^2)$$

$$4u^2 + 28u + 49 + 4v^2 = 4(u^2 - 4u + 4 + v^2)$$

$$4u^2 + 28u + 49 + 4v^2 = 4u^2 - 16u + 16 + 4v^2$$

$$44u + 33 = 0$$

$$4u + 3 = 0$$

Square the two

