Logical Design

Lecture 3: Arithmetic Operations

Produced By: Dr. Haleema Essa

2023-2024

1-Binary Arithmetic operations

Addition

The 4 basic rules for adding binary digits (bits) are as follows:

0+0=0

0+1=1

1+0=1

1+1=0 with carry 1

Example1: 10001 + 11101= 1 0 1 1 1 0

Example 2: 10111 + 110001

Solution:

H.W: 111000111011011 + 111111000110011

Subtraction

The four basic rules for subtracting bits as follows:

0-0=0

1-0=1

1-1 = 0

0-1=10-1=1 with borrow of 1

Example 1: 0011010 - 001100

1 1 Borrow

0011010

(-) 0 0 1 1 0 0

0001110

Decimal Equivalent:

 $0\ 0\ 1\ 1\ 0\ 1\ 0\ =\ 26$

 $0\ 0\ 1\ 1\ 0\ 0\ =\ 12$

26 - 12 = 14

H.W: 111000111011011 - 111111000110011

Multiplication

The four basic rules for multiplying bits are as follows:

0*0=0

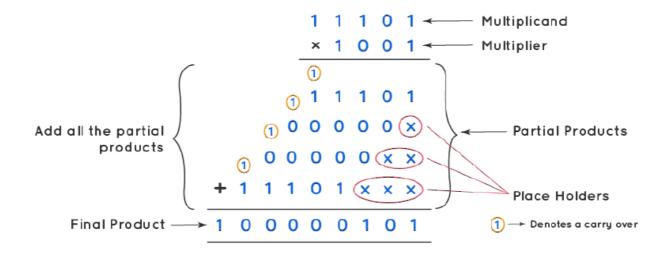
0*1=0

1*0=0

1*0=0

1*1=1

Example1:



Example2:

H.W: 11001110111 * 1111110011

2- Octal Arithmetic operations

Addition

Just as with decimal addition, octal uses "carry" when the sum of the values of a position exceeds 7_8

Example:

Subtraction

Just as with decimal subtraction, octal uses "borrow" when the difference between the values of a position requires it

Example:

Example:

3- Hexadecimal Arithmetic operations

Addition

Just as with decimal addition, hexadecimal uses "carry" when the sum of the values of a position exceeds 15_{10} [or F_{16}]

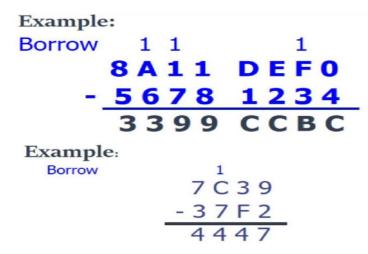
Example:

Example:

$$H.W:$$
 (A3F75)₁₆ + (3E6C7)₁₆

Subtraction

Just as with decimal subtraction, hexadecimal uses "borrow" when the difference between the values of a position requires it



H.W 1: (A3F75)₁₆ - (3E6C7)₁₆

H.W 2: (D5FE2A)₁₆ - (A378F6)₁₆

Signed Binary Numbers Representation

- Plus and Minus signs used for decimal numbers: 25 (or +25), -16, etc.
- For computers, it's desirable to represent everything as bits.
- Three types of signed binary number representation: Signed Magnitude, 1's Complement, 2's Complement.

Signed Magnitude

In the signed magnitude form, (-39) can be produced by changing the sign bit only to "1" and leave the magnitude bits as they are. So (-39) will be 10100111.

Example:

$$00001100_2 = 12_{10}$$
 $10001100_2 = -12_{10}$ Sign bit Magnitude

1's Complement

1's complement: the 1's complement form of any binary number is obtained simply by changing each 0 in the number to a 1 and each 1 to a 0. In other word, change each bit to its complement. For example:

H.W: Find the 1'S Complement of (11110000101010110011)₂

2's Complement

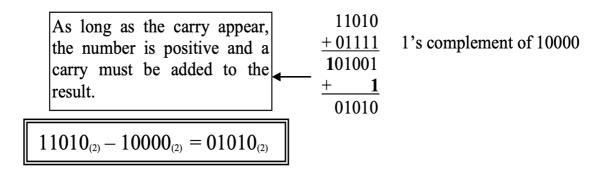
2's complement: the 2's complement form of a binary number is formed simply by taking the 1's complement of the number and adding 1 to the least significant bit position.

Example: find 2's complement of 10110010.

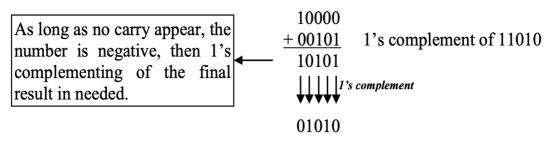
H.W: Find the 2'S Complement of (11110000101010110011)2

1's Complement Subtraction

Example: find $11010_{(2)} - 10000_{(2)}$ using 1's complement method (Case 1).



Example: find $10000_{(2)} - 11010_{(2)}$ using 1's complement method (Case 2).



$$10000_{\scriptscriptstyle (2)} - 11010_{\scriptscriptstyle (2)} = -01010_{\scriptscriptstyle (2)}$$

HW: Use 1's Complement to subtract the following:

1-
$$(12)_{10}$$
 - $(1)_{10}$ = ?

2-
$$(12)_{10}$$
 - $(13)_{10}$ = ?