Logical Design

Lecture 4: BCD and Gray Code

Produced By: Dr. Haleema Essa 2023-2024

Binary Coded Decimal (BCD)

A code used to represent each decimal digit of a number by a **4-Bit** Binary Value, the following table represents a conversion of decimal number to BCD.

Decimal	Binary	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	
9	1001	

However, binary coded decimal is not the same as hexadecimal. Whereas a 4-bit hexadecimal number is valid up to $(F)_{16}$ representing binary $(1111)_2$, (decimal 15), binary coded decimal numbers *stop at 9 binary* $(1001)_2$.

Example: $(357)_{10} = 0011 \ 0101 \ 0111 \ (BCD).$

H.W

Convert each of the following decimal numbers to BCD

$$A-45=?$$

$$B-2693=?$$

Addition of BCD code

- Step 1: Add the two BCD numbers, using the rules for binary addition.
- Step 2: If a 4-bit sum is equal to or less than 9, it is a valid BCD number.
- Step 3: If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, it is an invalid result. Add 6 (0110) to the 4-bit sum in order to skip the six invalid BCD code words and return the code to 8421. If a carry results when 6 is added, simply add the carry to the next 4-bit group.

Example 1: Find the sum of the BCD numbers 01000011 + 00110101

Example 2: Find the sum of the BCD numbers 01110101 + 00110101

	0111	0101		75
+	0011	0101		+ 35
	1010	1010	Both left and right BCD numbers are invalid. So	110
+	0110	+0110	we would add 6 to both the BCD numbers.	
0001	0001	0000	the BCD numbers.	

Gray Code

The gray code *is unweighted and is not an arithmetic* code; that is, there are *no specific weights assigned to the bit positions*. The important feature of the Gray code is that it exhibits *only a single bit change from one code number to the next*. Table below is a listing of the four-bit Decimal, Binary, Gray Code for decimal numbers 0 through 15.

Decim	al (base 10)	Binary (base 2)	Binary-Reflected (no base)
	0	0000	0000
	1	0001	0001
g3 = b3	2	0010	0011
$g2 = b3 \oplus b2$	3	0011	0010
g1 = b2 ⊕ b1	4	0100	0110
$g0 = b1 \oplus b0$	5	0101	0111
	6	0110	0101
11 00 0/ similar mut 0\	7	0111	0100
11 or 00 \longrightarrow 0 (similar put 0)	8	1000	1100
01 or 10	9	1001	1101
	10	1010	1111

Advantages:

- 1. Can be used to minimize a logic circuit.
- 2. It minimize error while converting analog to digital signals.
- 3. It is widely used in digital communications, such as digital terrestrial television and cable TV systems, to correct errors.

Disadvantages:

- 1. It is not suitable for arithmetic operations.
- 2. It is limited to few practical applications.

Binary-to-Gray Conversion

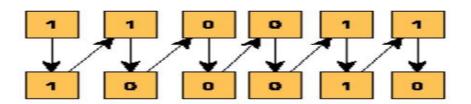
1. The Most Significant Bit (MSB) in the gray code is the same as the corresponding MSB in binary number.

2. Going from left to right, apply **XOR** on each adjacent pair of binary code bits to get the next gray code bit.

11 or 00
$$\longrightarrow$$
 0 (similar put 0)
01 or 10 \longrightarrow 1 (different put 1)

Gray-to-Binary Conversion

- 1– The MSB is the binary code is same as corresponding MSB in the Gray code.
- 2- **Add** each binary digit generated to the Gray digit in the next adjacent position and discard carry.



H.W1: Encode to Gray Code

A-
$$(1101)_2 = (?)_{gray}$$

B-
$$(0010)_2 = (?)_{gray}$$

<u>H.W2:</u> Covert the following Gray Code to Binary

A-
$$(1001101)_{gray} = (?)_2$$

B-
$$(10110011)_{gray} = (?)_2$$