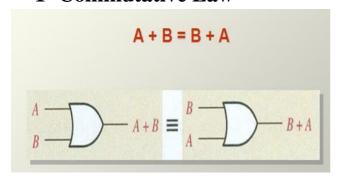
Logical Design

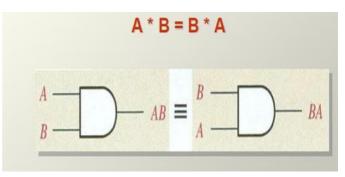
Lecture 6: Boolean Algebra

Produced By: Dr. Haleema Essa 2023-2024

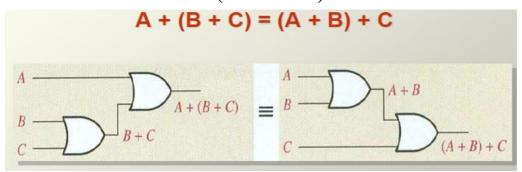
Laws of Boolean Algebra

1- Commutative Law

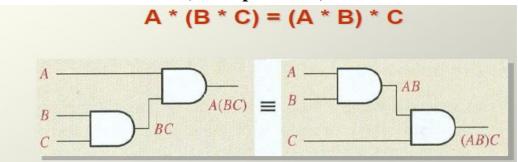




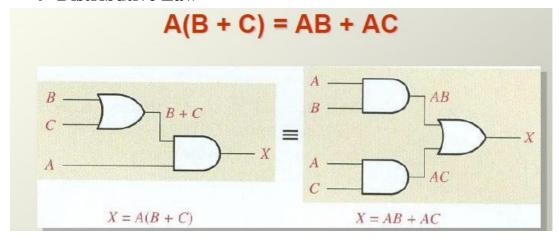
2- Associative Law (Addition)



3- Associative Law (Multiplication)



4- Distributive Law



Rules of Boolean Algebra

Rule1:

a-Identity (Addition)

$$X=A+O=A$$

$$A = 1$$

$$0$$

$$X = 1$$

$$0$$

$$X = 0$$

$$0$$

b-Identity (Multiplication)

$$X=A*1=A$$

$$A = 0$$

$$1$$

$$X = 0$$

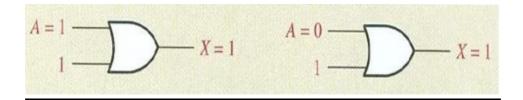
$$1$$

$$X = 1$$

Rule2:

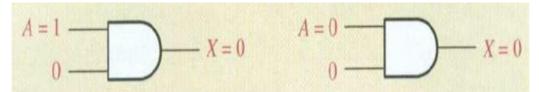
a-NULL Rule (Addition)

$$X = A + 1 = 1$$



b-NULL Rule (Multiplication)

$$X = A * 0 = 0$$



Rule3:

a-Idempotent (Addition)

$$X=A+A=A$$

$$A = 0$$

$$A = 0$$

$$X = 0$$

$$A = 1$$

$$A = 1$$

$$X = 1$$

b-Idempotent (Multiplication)

$$X = A * A = A$$

$$A = 0$$

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

Rule4:

a-Complement (Addition)

$$X=A+\overline{A}=1$$

$$A = 0$$
 $\overline{A} = 1$
 $X = 1$
 $\overline{A} = 0$
 $X = 1$
 $\overline{A} = 0$

b-Complement (Multiplication)

$$X = A * \overline{A} = 0$$

$$A = 1$$
 $\overline{A} = 0$
 $X = 0$
 $\overline{A} = 1$
 $X = 0$
 $X = 0$

Rule4:

OR Absorption:
$$A + (A \cdot B) = A$$

Α	В	AB	A + AB	$A \rightarrow \bigcirc$
0	0	0	0	
0	1	0	0	$B \longrightarrow$
1	0	0	1	
1	1	1 1	1	A straight connection

The proof:

Left side =
$$A + AB$$

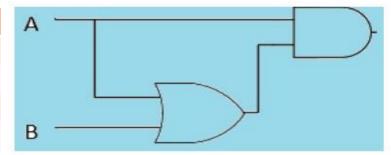
$$= A (1+B)$$
$$= A \cdot 1$$

=A

Rule5:

AND Absorption: $A \cdot (A + B) = A$

Α	В	A+B	A.(A+B)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1



The proof:

Left side =
$$A(A+B)$$

$$= A \cdot A + AB$$

$$= A + AB$$

$$= A(1 + B)$$

$$=A \cdot 1$$

=A

Rule6:

$$(\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C}) = \mathbf{A} + \mathbf{BC}$$

A	В	C	A+B	A+C	(A+B)(A+C)	BC	A + BC	$A + \Box$
0	0	0	0	0	0	0	0	B
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	C-
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	- 1	
1	0	1	1	1	1	0	1	A
1	1	0	1	1	1	0	1	B
1	- 1	1	1	1	1	1	1	c
							A	
					* Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	equal	<u>†</u>	

The proof:

Left side =
$$(A+B)(A+C)$$

$$= AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C + B) + BC$$

$$= A \cdot 1 + BC$$

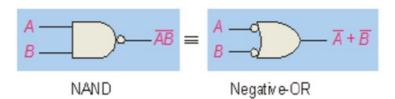
$$= A + BC = Right side$$

DeMorgan's Theorem (First Theorem)

The complement of a product of variables is equal to the sum of complemented variables.

$$\overline{AB} = \overline{A} + \overline{B}$$

Applying DeMorgan's First Theorem to gates:



Α	В	~ A	~ B	~ AB	~ A + ~B
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

DeMorgan's Theorem (Second Theorem)

The complement of a sum of variables is equal to the product of complemented variables.

$$\overline{A+B}=\overline{A}\cdot\overline{B}$$

Applying DeMorgan's Second Theorem to gates:

$$\begin{array}{c}
A \longrightarrow \\
B \longrightarrow \\
\hline
NOR
\end{array}$$
Negative-AND

Α	В	~ A	~ B	~ (A+B)	~ A . ~B
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Example 1: Apply DeMorgan's theorem to simplify the following expression.

$$X=\bar{c}+D$$

To apply DeMorgan's theorem to the above expression, we can break the over-bar that covers both terms and change the sign between them as follows:

$$X = \overline{\overline{C}} \cdot \overline{D}$$

$$X=C \cdot \overline{D}$$

Example 2: Simplify the following expression, and then draw the logic circuit after simplification.

$$Y = \overline{A + B} + \overline{ABC} + \overline{AB}$$

$$= \overline{A} \overline{B} + \overline{A} + \overline{B} + \overline{C} + \overline{A} + B$$

$$= \overline{A}(\overline{B} + 1 + 1) + (B + \overline{B}) + \overline{C}$$

$$= \overline{A} + \overline{C}$$

Example 3: Simplify the following expression.

$$Y = (A+B)(A+\overline{B})$$

$$= AA + A\overline{B} + AB + B\overline{B}$$

$$= A + A(\overline{B} + B)$$

$$= A + A$$

$$= A$$

H.W: Simplify the following expression.

1- Y = ABC + A
$$\bar{B}$$
C + AB \bar{C}
2- Y = ABC + A \bar{B} (\bar{A} \bar{C})

Example4: Determine if the following equation is valid (Derived from the truth table)

$$\bar{X}1 \bar{X}3+X2 X3+X1 \bar{X}2 = \bar{X}1 X2+X1 X3+ \bar{X}2 \bar{X}3$$

Left-Hand Side (LHS)							R	ight-	Hand Si	de (RHS	5)				
Row number	x_1	x_2	x_3	$\overline{x_1}\overline{x_3}$	$x_2 x_3$	$x_1 \overline{x_2}$	f	Row number	x_1	x_2	x_3	$\overline{x_1}x_2$	x_1x_3	$\frac{1}{x_2}$ $\frac{1}{x_3}$	f
0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0
2	0	1	0	1	0	0	1	2	0	1	0	1	0	0	1
3	0	1	1	0	1	ŏ	1	3	0	1	1	1	0	0	1
4	1	0	0	0	0	1	1	4	1	0	0	0	0	1	1
5	1	0	1	0	0	1	1	5	1	0	1	0	1	0	1
6	1	1	0	0	0	0	0	6	1	1	0	0	0	0	0
7	1	1	1	0	1	0	1	7	1	1	1	0	1	0	1

<u>**H.W**:</u> For the given equation, give the *truth table*, then *simplify* and *draw* the circuit *before and after* simplification.

$$Y = \bar{A}B\bar{C} + \bar{A}BC + AB\bar{C} + ABC$$