

Collage: Artificial Intelligence Module Title: Discrete Structure

Module Code: UoMAI106

# 1- What 's a proposition?

A proposition is a declarative statement that's either TURE or FALSE (but not both). However, here some examples of propositions and not propositions statements shown in the below table: -

**Table 3.1:** Some examples of Propositional/Not Propositional statements

| Propositions                         | Not propositions  |
|--------------------------------------|-------------------|
| 3 + 2 = 32                           | 3 + 2             |
| UoMCS104 is Ahmed's favorite class.  | Bring me coffee!  |
| There is other life in the universe. | Do you like Cake? |
| 1 + 0 = 1                            | x + 1 = 2         |

### 2- Tautology

A formula of propositional logic is a tautology if the formula itself is always true, regardless of Which valuation is used for propositional variables.

**Example 1.** Construct a truth table to show that  $((p \land q) \rightarrow p)$  is a tautology.

### Solution.

The truth table for  $((p \land q) \rightarrow p)$ 

| p | q |   | $p \wedge q$ | $((p \land q) \to p)$ |
|---|---|---|--------------|-----------------------|
| T | T | T |              | T                     |
| T | F | F |              | T                     |
| F | T | F |              | T                     |
| F | F | F |              | T                     |

Science all entries under  $((p \land q) \rightarrow p)$  are T, the formula is a **tautology.** 

**Example 2.** Construct a truth table to show that  $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$  is tautology.

#### Solution.

| p | q | $p \rightarrow q$ | $\neg p$ | $\neg p \lor q$ | $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$ |
|---|---|-------------------|----------|-----------------|-----------------------------------------------------|
| T | T | T                 | F        | T               | T                                                   |
| T | F | F                 | F        | F               | T                                                   |
| F | T | T                 | T        | T               | T                                                   |
| F | F | T                 | T        | T               | T                                                   |

Science all entries under  $(p \to q) \leftrightarrow (\neg p \lor q)$  are T, the formula is a **tautology.** 



Collage: Artificial Intelligence Module Title: Discrete Structure Module Code: UoMAI106

**Example 3.** Construct a truth table to show that  $(\neg p \rightarrow \neg q) \rightarrow \neg p$  is tautology.

#### Solution.

| p | q | $\neg p$ | $\neg q$ | $\neg p \rightarrow \neg q$ | $(\neg p \rightarrow \neg q) \rightarrow \neg p$ |
|---|---|----------|----------|-----------------------------|--------------------------------------------------|
| T | T | F        | F        | T                           | F                                                |
| T | F | F        | T        | T                           | F                                                |
| F | T | T        | F        | F                           | T                                                |
| F | F | T        | T        | T                           | T                                                |

Since the last row has rows with *false*, the formula is **not tautology**.

#### **3- Predicates**

A property or relationship between objects is called a **predicate**. A description of a predicate in logic is called a **formula**. **Figure 3.1** illustrate the formula: -

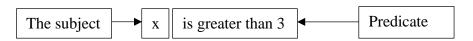


Figure 3.1. Predicate structure

We can denote the statement "x is greater than 3" by P x, where P denotes the predicate "is greater than 3" and x is the variable.

The statement P(x) is also said to be the value of the **propositional function** P at x. Once a value has been assigned to the variable x, the statement P(x) becomes a proposition and has a truth value.

**Example 4.** Let P(x) denote the statement "x > 3". What are the truth values of P(4) and P(2)? **Solution.** 

We obtain the statement P (4) by setting x = 4 in the statement "x > 3." Hence, P (4), which is the statement "4 > 3," is **true**.

However, P (2), which is the statement "2 > 3," is **false**.



Collage: Artificial Intelligence Module Title: Discrete Structure Module Code: UoMAI106

**Example 5.** Let Q (x, y) denote the statement "x = y + 3" what are the truth values of the propositions Q (1,2) and Q (3,0)?

### Solution.

Q (1,2) 
$$\longrightarrow$$
 1 = 1 + 3  $\longrightarrow$  1 = 4 **False** (F)

Q 
$$(3, 0) \longrightarrow 3 = 0 + 3 \longrightarrow 3 = 3$$
 **True** (T)

### Example 6.

- 1- Let P(x) denote the statement " $x \le 4$ ". What are the truth values?
  - a) P(0)
  - b) P(4)
  - c) P(6)

### Solution.

- a) T
- b) T
- c) F
- 2- Let P(x) be the statement "the word x contains the letter (a). What are the truth values?
  - a) P(orange)
  - b) P(Lemon)
  - c) P(true)
  - d) P(false)

# Solution.

- a) T
- b) F
- c) F
- d) T