Lecture Six

Security in Network Operating Systems

Protecting Resources, Data, and Communication

Dr. Tarfa Yaseen Hamed

Department of Networks

College of Computer Science and Mathematics

University of Mosul

2025

Introduction to NOS Security

- Why Security Matters in NOS:
 - **Protects Resources**: Ensures that network resources (e.g., files, printers, applications) are accessible only to authorized users.
 - **Safeguards Data**: Prevents unauthorized access, modification, or theft of sensitive data.
 - Ensures Availability: Protects against attacks that could disrupt network services (e.g., Denial-of-Service attacks).

Key Security Goals (CIA Triad)

- Confidentiality: Ensuring that data is accessible only to authorized users.
- Integrity: Protecting data from unauthorized modification or corruption.
- **Availability**: Ensuring that network resources are accessible when needed.

Common Threats to NOS

- Unauthorized Access: Hackers gaining access to sensitive data or systems.
- Malware: Viruses, worms, and ransomware that disrupt operations.
- **Denial-of-Service (DoS) Attacks**: Overloading the network to make it unavailable.
- **Insider Threats**: Malicious or negligent actions by employees or users.

Key Security Challenges in NOS

1. Scalability:

 Definition: Ensuring security measures can handle the growth of the network (e.g., more users, devices, and data).

Challenges:

- Managing security policies across large, distributed networks.
- Ensuring consistent protection as the network expands.

2. Complexity:

Definition: Managing diverse devices, protocols, and applications in a networked environment.

Challenges:

- Integrating security across heterogeneous systems (e.g., Windows, Linux, IoT devices).
- Balancing usability and security.

3. Emerging Threats:

 Definition: New and evolving threats that exploit vulnerabilities in NOS.

Examples:

- Zero-Day Exploits: Attacks targeting unknown vulnerabilities.
- Ransomware: Malware that encrypts data and demands payment.
- Advanced Persistent Threats (APTs): Long-term, targeted attacks by skilled adversaries.

4. Insider Threats:

 Definition: Security risks posed by employees, contractors, or other trusted individuals.

Types:

- Malicious Insiders: Deliberate sabotage or data theft.
- Negligent Insiders: Accidental exposure of sensitive data.

5. Resource Constraints:

• **Definition**: Limited budget, personnel, or tools for implementing robust security measures.

Challenges:

- Prioritizing security investments.
- Training staff to handle security incidents.

Authentication and Authorization in NOS

1. Authentication:

- Definition: The process of verifying the identity of a user, device, or system.
- Purpose: Ensures that only legitimate users can access the network.

Methods:

- Passwords: Simple but vulnerable to brute-force attacks.
- Multi-Factor Authentication (MFA): Combines multiple verification methods (e.g., password + OTP).
- Biometrics: Uses unique biological traits (e.g., fingerprints, facial recognition).

Authentication and Authorization in NOS (cont.)

2. Authorization:

- Definition: The process of granting or denying access to resources based on user roles or permissions.
- Purpose: Ensures that users can only access resources they are permitted to use.

Methods:

- Role-Based Access Control (RBAC): Assigns permissions based on user roles (e.g., admin, user, guest).
- Access Control Lists (ACLs): Specifies which users or systems can access specific resources.

Authentication and Authorization in NOS (cont.)

- Importance of Authentication and Authorization:
 - **Prevents Unauthorized Access**: Protects sensitive data and resources.
 - Enhances Accountability: Tracks user actions for auditing purposes.
 - **Supports** Compliance: Meets regulatory requirements (e.g., GDPR, HIPAA).
- Examples in NOS:
 - Active Directory (Windows Server): Centralized authentication and authorization.
 - Linux PAM (Pluggable Authentication Modules): Flexible authentication framework.

Encryption Techniques in NOS

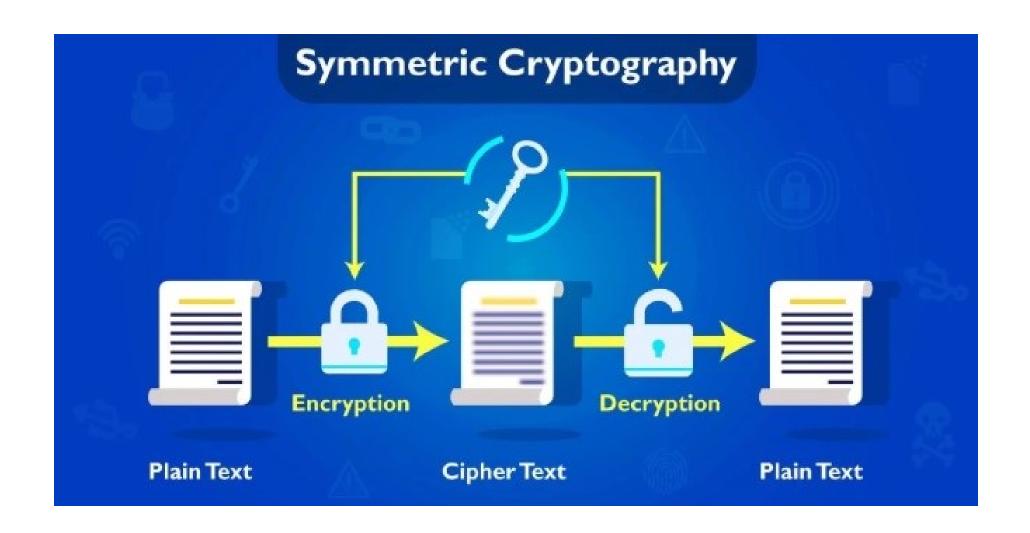
- What is Encryption?
- Definition: The process of converting plaintext into ciphertext to protect data from unauthorized access.

Purpose:

Ensures **confidentiality** and **integrity** of data during storage and transmission.

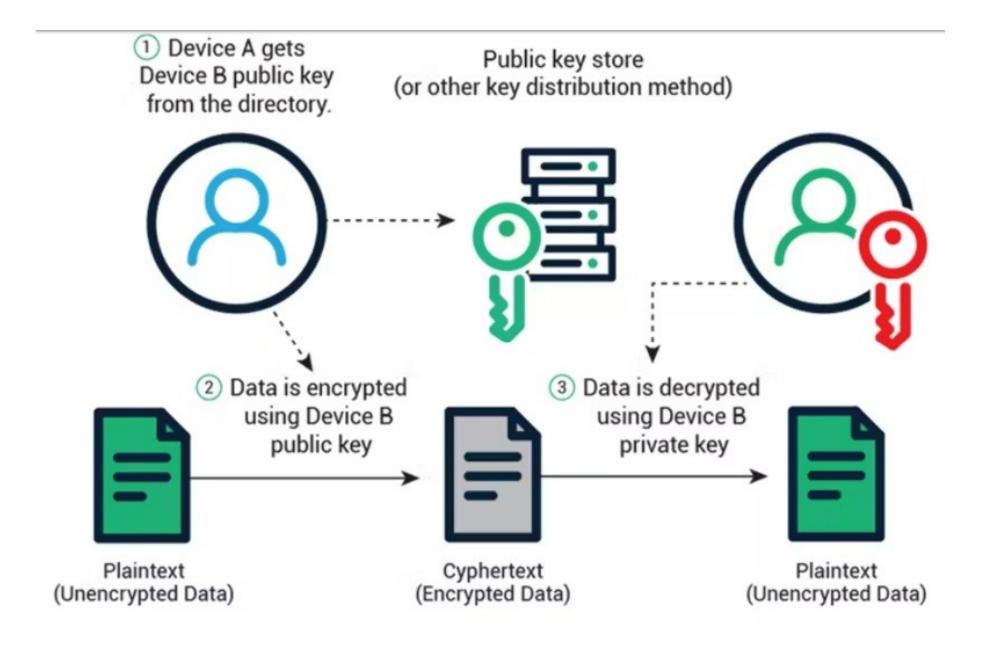
Encryption and Decryption

SAMPLE ENCRYPTION AND DECRYPTION PROCESS



Types of Encryption:

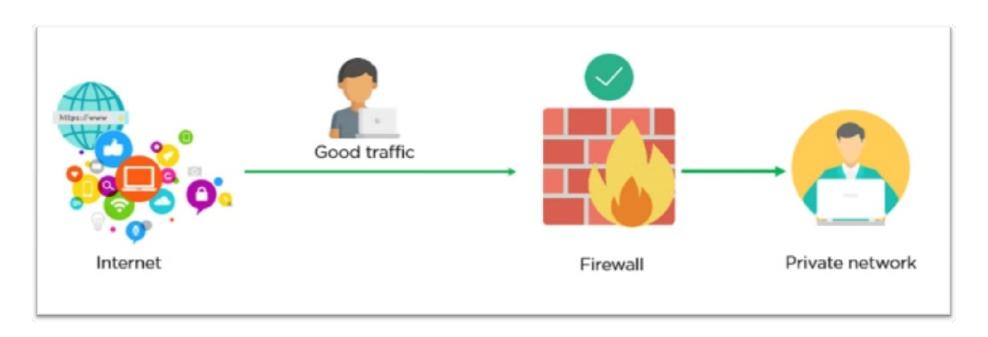
1. Symmetric Encryption:


- Uses a single key for both encryption and decryption.
- Examples: AES (Advanced Encryption Standard), DES (Data Encryption Standard).
- Pros: Fast and efficient for large data volumes.
- Cons: Key distribution can be challenging.

Types of Encryption: (cont.)

2. Asymmetric Encryption:

- Uses a pair of keys (public and private) for encryption and decryption.
- Examples: RSA (Rivest-Shamir-Adleman), ECC (Elliptic Curve Cryptography).
- Pros: Solves the key distribution problem.
- Cons: Slower and computationally intensive.


Applications of Encryption in NOS:

- **Data at Rest**: Encrypting files and databases stored on servers.
- Data in Transit: Securing communication over networks (e.g., SSL/TLS for HTTPS).
- Authentication: Verifying identities using digital certificates.

Firewalls in NOS

- What is a Firewall?
- **Definition**: A network security device that monitors and controls incoming and outgoing traffic based on predefined security rules.
- **Purpose**: Acts as a barrier between a trusted internal network and untrusted external networks (e.g., the internet).

Types of Firewalls:

1. Packet Filtering Firewalls:

- Examines packets based on source/destination IP addresses, ports, and protocols.
- Pros: Fast and efficient.
- Cons: Limited ability to detect advanced threats.

2. Stateful Inspection Firewalls:

- Tracks the state of active connections and makes decisions based on context.
- Pros: More secure than packet filtering.
- Cons: Slower due to additional processing.

Types of Firewalls: (cont.)

3. Proxy Firewalls:

- Acts as an intermediary between users and the internet, filtering traffic at the application layer.
- Pros: Provides deep packet inspection and hides internal network details.
- Cons: Can introduce latency.

4. Next-Generation Firewalls (NGFW):

- Combines traditional firewall features with advanced capabilities like intrusion prevention, deep packet inspection, and application awareness.
- Pros: Highly effective against modern threats.
- Cons: Expensive and complex to configure.

How Firewalls Work:

- Rule-Based Filtering: Uses predefined rules to allow or block traffic.
- Default Deny: Blocks all traffic unless explicitly allowed.
- Logging and Alerts: Records traffic and notifies administrators of suspicious activity.

Firewall Deployment in NOS:

- Network Perimeter: Protects the boundary between the internal network and the internet.
- Internal Segmentation: Divides the internal network into secure zones (e.g., separating finance and HR departments).
- Host-Based Firewalls: Installed on individual devices for additional protection.

Benefits of Firewalls and Challenges in Firewall Management:

Benefits

- Prevents Unauthorized Access: Blocks malicious traffic.
- Protects Against Malware: Filters out harmful content.
- Enhances Privacy: Hides internal network details from external users.

Challenges

- Complex Configuration: Requires expertise to set up and maintain.
- False Positives/Negatives: Legitimate traffic may be blocked, or malicious traffic may be allowed.
- **Performance Impact:** Can slow down network traffic, especially with deep packet inspection.

Intrusion Detection Systems (IDS) in NOS

- What is an IDS?
- Definition: A security tool that monitors network traffic or system activities for malicious behavior or policy violations.
- **Purpose**: Detects and alerts administrators about potential security breaches.

Types of IDS:

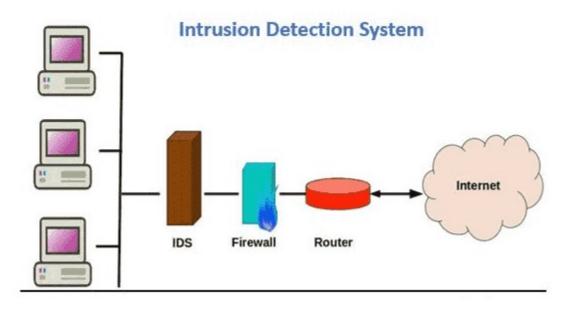
1. Network-Based IDS (NIDS):

- Monitors network traffic for suspicious activity.
- Pros: Can detect attacks targeting multiple systems.
- Cons: May generate false positives.

2. Host-Based IDS (HIDS):

- Monitors activities on individual devices (e.g., servers, workstations).
- Pros: Provides detailed insights into system-level events.
- Cons: Limited to the host it is installed on.

Types of IDS: (cont.)


3. Signature-Based IDS:

- Detects known threats by matching patterns (signatures) in traffic or logs.
- Pros: Effective against known attacks.
- Cons: Cannot detect zero-day exploits.

4. Anomaly-Based IDS:

- Detects unusual behavior by comparing current activities to a baseline.
- Pros: Can detect unknown or zero-day attacks.
- Cons: May generate false positives.

How Firewalls and IDS Work Together

Complementary Roles:

- Firewalls: Focus on prevention by blocking unauthorized traffic.
- **IDS**: Focuses on **detection** by identifying suspicious activities that bypass the firewall.

How Firewalls and IDS Work Together

Workflow:

Traffic Filtering by Firewall:

- The firewall inspects incoming and outgoing traffic based on predefined rules.
- It blocks traffic that violates the rules (e.g., traffic from blacklisted IP addresses or to unauthorized ports).

Traffic Monitoring by IDS:

- The IDS analyzes the traffic that passes through the firewall.
- It looks for patterns or behaviors that indicate potential threats (e.g., unusual login attempts, malware signatures).

Alerting and Response:

- If the IDS detects suspicious activity, it sends an alert to the administrator.
- The administrator can then take action, such as updating firewall rules to block the threat or investigating further.