

1- Types of Quantification

Before we start explaining the types of quantification, we will illustrate all types of number sets, as shown in below **Figure 1**: -

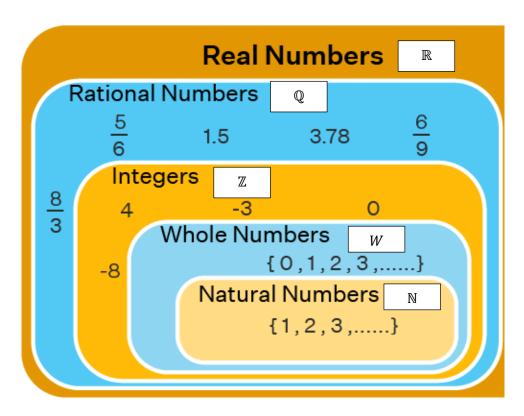


Figure 1. List of all kinds of numbers.

1.1 Restricted Quantifiers

These quantifiers can be further modified or restricted by **conditions**, leading to the concept of restricted quantifiers. We can limit the **Domain** of the quantifier by modifying the notation a bit.

Example 1. What is the truth value of the quantification of $\forall x < 0 \ (x^2 > 0)$. Where the domain consists of all real numbers?

Solution.

The meaning of the above statement: the square root of a negative real number is positive.

1.2 Nested Quantifiers

Example 2. Let x and y be the real numbers and P(x, y) denotes "x + y = 0." Find the truth values of

- a) $\forall x \forall y P(x, y)$
- b) $\forall x \exists y P(x, y)$
- c) $\exists x \forall y P(x,y)$
- d) $\exists x \exists y P(x, y)$

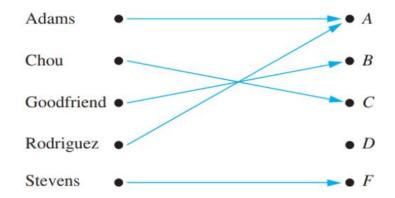
Solution.

Domain: All real numbers.

- a) $\forall x \forall y P(x, y) \equiv \forall x \forall y (x + y = 0)$ **False** and can't be true.
- b) $\forall x \exists y P(x, y) \equiv \forall x \exists y (x + y = 0)$ Ture
- c) $\exists x \, \forall y \, P(x, y) \equiv \exists x \, \forall y \, (x + y = 0)$ False
- d) $\exists x \exists y P(x, y)$ Ture.

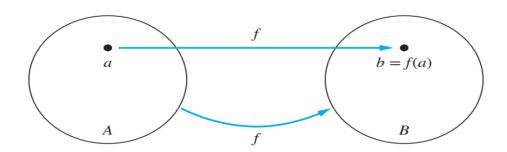
2- Functions

Functions are an important part of discrete mathematics. A function assigns exactly one element of a set to each element of the other set. Functions are the rules that assign one input to one output. The function can be represented as $f: A \rightarrow B$. A is called the domain of the function and B is called the codomain function.



Assignment of grades in a discrete mathematics class.

The Function $f: A \rightarrow B$



The function f maps A to B.

The Function $f: A \rightarrow B$

Domain: A

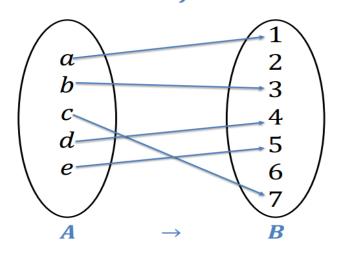
Co-Domain: B

f(a) = bb is the *image* of a a is a *preimage* of b $\begin{array}{c}
\bullet \\
a
\end{array}$ $\begin{array}{c}
b = f(a)
\end{array}$ $\begin{array}{c}
B
\end{array}$

The **range**, or image, of *f* is the *set of all images* of elements of *A*.

The function f maps A to B.

The Function $f: A \rightarrow B$



Domain = $\{a, b, c, d, e\}$

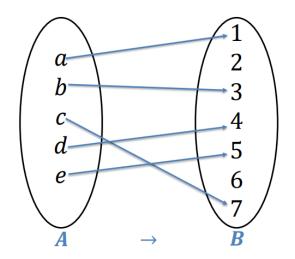
Co-Domain = $\{1,2,3,4,5,6,7\}$

Range = $\{1,3,4,5,7\}$

2.1 One-to-One function (injective)

A function f is said to be one-to-one, or injective, **if and only if** f(a) = f(b) implies that a = b for all a and b in the domain of f.

One-to-One function (injective)



$$f(a) = 1$$

$$f(b) = 3$$

$$f(c) = 7$$

$$f(d) = 4$$

$$f(e) = 5$$

NOT *One-to-One* function (Not injective)



$$f(a) = 1$$

$$f(b) = 1$$

$$f(c) = 7$$

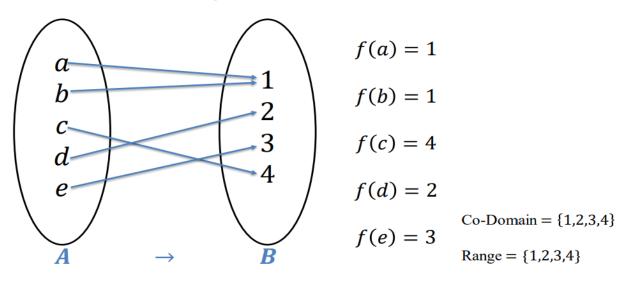
$$f(d) = 4$$

$$f(e) = 5$$

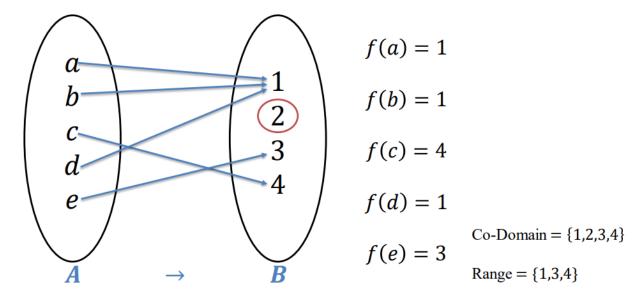
2.2 onto function (surjective)

A function f from A to B is called onto, or surjective, **if and only if** for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

onto function (surjective)



NOT *onto* function (Not surjective)



Collage: Artificial Intelligence Module Title: Discrete Structure

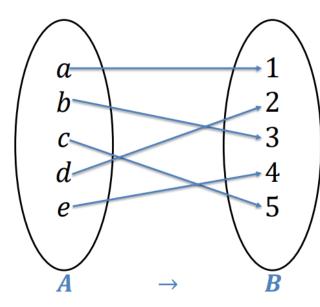
Module Code: UoMAI106

2.3 One-to-one correspondence (bijection)

The function f is a one-to-one correspondence, or a bijection, if it is both **one-to-one** and **onto**.

One-to-one correspondence (bijection)

$$|\mathbf{A}| = |\mathbf{B}|$$



$$f(a) = 1$$

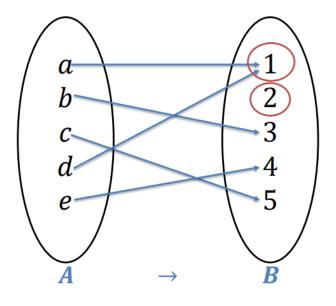
$$f(b) = 3$$

$$f(c) = 5$$

$$f(d) = 2$$

$$f(e) = 4$$
 Co-Domain = $\{1,2,3,4,5\}$
Range = $\{1,2,3,4,5\}$

NOT One-to-one correspondence (Not bijection)



$$f(a) = 1$$

$$f(b) = 3$$
 NOT one-to-one

$$f(c) = 5$$
 NOT onto

$$f(d) = 1$$

$$f(e) = 4$$
 Co-Domain = $\{1,2,3,4,5\}$
Range = $\{1,3,4,5\}$