Fast Fourier Transform

The decomposition procedure is called the fast Fourier transform (FFT) algorithm. The reduction in proportionality from N^2 to $N \log_2 N$ multiply/add operations represents a significant saving in computation effort as shown in the following table.

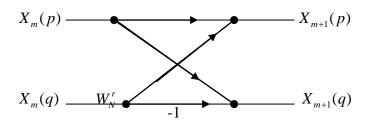
N	N^2 (DFT)	$N \log_2 N (FFT)$
2	4	2
4	16	8
8	64	24
16	256	64
32	1024	160
64	4096	384
128	16384	896
256	65536	2048

In the FFT algorithm the number of samples is equal to 2^n where n is a positive integer and N is assumed to be of the form $N=2^n$

$$2^{n} = N = number of inputs$$

 $2^{n-1} = butterfly / level$
 $n = number of levels$

Butterfly Computation



$$X_{m+1}(p) = X_m(p) + X_m(q) * W_N^r$$

 $X_{m+1}(q) = X_m(p) - X_m(q) * W_N^r$
where:

m: represent stage (level) number p,q: two different pixel in the same stage W_N^r N: represent number of pixel(samples) r: is computed as for a=1 to $2^{level-1}$ do $r=(a-1)*2^{n-level}$

$$W_N^r = e^{-j2\pi/N}$$

Bit Reverse:

$$x_0 = 000$$
 $000 = x_0$
 $x_1 = 001$ $100 = x_4$
 $x_2 = 010$ $010 = x_2$
 $x_3 = 011$ $110 = x_6$
 $x_4 = 100$ $001 = x_1$
 $x_5 = 101$ $101 = x_5$
 $x_6 = 110$ $011 = x_3$
 $x_7 = 111$ $111 = x_7$

Example: Use FFT to find the Fourier transform of the following points 8 3 1 4 ?

Solution: number of points =
$$N = 4 = 2^2 = 2^n$$

Butterfly / level = $2^{n-1} = 2^{2-1} = 2$
Number of level = $n = 2$

Bit Reverse

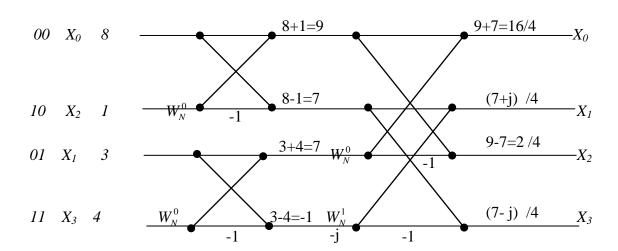
Se

$$X_0 = 00$$
 $X_0 = 00$
 $X_0 = 00$

Butterfly Computation

$$X_{m+1}(p) = X_m(p) + X_m(q) * W_N^r$$

$$X_{m+1}(q) = X_m(p) - X_m(q) * W_N^r$$



$$W_N^0 = W_4^0 = 1$$

$$W_N^1 = W_4^1 = e^{-j2\pi/4} = e^{-j\pi/2} = \cos\frac{\pi}{2} - j\sin\frac{\pi}{2} = 0 - j = -j$$

Inverse of Fast Fourier Transform

FFT Inverse

The inverse algorithm is same as *FFT* algorithm but the difference is taking the conjugate of the complex number.

Bit Reverse

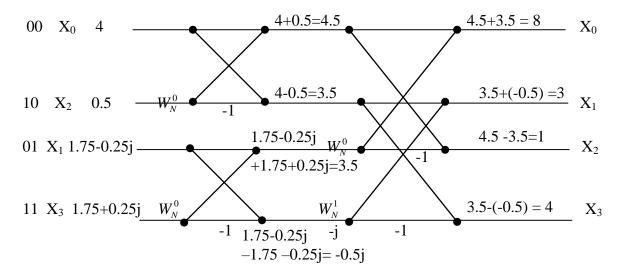
$$X_0 = 00$$
 $X_0 = 00$ $= X_0$ 4 $X_1 = 01$ Bit $X_1 = 10$ $= X_2$ 0.5 $X_2 = 10$ Reverse $X_2 = 01$ $= X_1$ $1.75 + 0.25j$ $X_3 = 11$ $X_3 = 11$ $= X_3$

Butterfly Computation

$$X_{m+1}(p) = X_m(p) + X_m(q) * W_N^r$$

$$X_{m+1}(q) = X_m(p) - X_m(q) * W_N^r$$

Conjugate



$$W_N^0 = W_4^0 = 1$$

$$W_N^1 = W_4^1 = e^{-j2\pi/4} = e^{-j\pi/2} = \cos\frac{\pi}{2} - j\sin\frac{\pi}{2} = 0 - j = -j$$