Mathematical Statistics II - Spring 2024 Lecture 08

Prepared by: Dr. Zaid T. Al-Khaledi

Steps of the change-of-variable approach:

- 1. Show that Y = g(X) is a monotone function. The function g(X) is increasing if $\frac{d}{dx}g(x) > 0$, and is decreasing if $\frac{d}{dx}g(x) < 0$.
- 2. Find the support of Y.
- 3. Solve for the inverse of the transformation; i.e., find $x = g^{-1}(y)$.
- 4. Obtain $\frac{dx}{dy}$.
- 5. The pdf of Y is $f_Y(y) = f_X(g^{-1}(y)) \mid \frac{dx}{dy} \mid$.

Example 8.1: Let X be a random variable with the following PDF

$$f_X(x) = \begin{cases} 4x^3 & \text{for } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

consider random variable $Y = -\ln X$. Use the change-of-variable approach to find the distribution of Y.

Solution: Here are the steps of the above algorithm:

- 1. We have $\frac{d}{dx}g(x) = -\frac{1}{x} < 0$ because x is positive. Therefore, $g(\cdot)$ is a decreasing function.
- 2. The support of $Y = -\ln X$ is $(0,\infty)$.
- 3. If $y = -\ln x$ then $x = e^{-y}$.
- 4. $\left| \frac{dx}{dy} \right| = \left| -e^{-y} \right| = e^{-y}$.

5. Thus the PDF of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \mid \frac{dx}{dy} \mid$$

= $4 (e^{-y})^3 e^{-y} = 4e^{-4y}$

hence $Y \sim Expo(4)$.

Example 8.2 (Homework): Let X be a random variable with the following PDF

$$f_X(x) = \begin{cases} 2xe^{-x^2} & \text{for } 0 \le x < \infty \\ 0 & \text{otherwise} \end{cases}$$

consider random variable $Y = X^2$. Use the change-of-variable approach to find the PDF of Y.

3- The moment generating function method: This method is mainly used to find the distribution of the sum of independent random variables. That is, if $X_1, X_2, ..., X_k$ are k independent random variables, then we can use the *moment generating function method* to find the distribution of $Y = \sum_{j=1}^k X_j$. Notice that if $X_1, X_2, ..., X_k$ are k independent random variables, then

$$M_{(Y)}(t) = E \left[e^{tY} \right]$$

$$= E \left[e^{t(X_1 + X_2 + \dots + X_k)} \right]$$

$$= E \left[e^{tX_1} \right] E \left[e^{tX_2} \right] \cdots E \left[e^{tX_k} \right] \quad \text{by independence}$$

$$= M_{(X_1)}(t) M_{(X_2)}(t) \cdots M_{(X_k)}(t)$$

Therefore, if we know the MGFs of $X_1, X_2, ..., X_k$, we can find the MGF of $Y = \sum_{j=1}^k X_j$, and hence the distribution of Y.

Example 8.3 (Homework): (Additive property of Bernoulli distribution) Let $X_1, X_2, ..., X_n$ be n independent Bernoulli trials. Use the MGF method to find the distribution of $Y = \sum_{j=1}^{n} X_j$.

Example 8.4: (Additive property of Binomial distribution)

Let $Y_1 \sim Binomial(n_1, p)$, and $Y_2 \sim Binomial(n_2, p)$ be two independent random variables. Use the MGF method to show that $Y \sim Binomial(n, p)$, where $n = n_1 + n_2$.

Solution: Since $Y_1 \sim Binomial(n_1, p)$, and $Y_2 \sim Binomial(n_2, p)$, then

$$M_{Y_1}(t) = (pe^t + (1-p))^{n_1}$$
 and $M_{Y_2}(t) = (pe^t + (1-p))^{n_2}$

Further, since Y_1 and Y_2 are independent, we have

$$M_{(Y)}(t) = M_{Y_1}(t)M_{Y_2}(t)$$

$$= (pe^t + (1-p))^{n_1} (pe^t + (1-p))^{n_2}$$

$$= (pe^t + (1-p))^{n_1+n_2} = (pe^t + (1-p))^n$$

that is, $Y \sim Binomial(n, p)$. Hence the density function of $Y = Y_1 + Y_2$ is given by

$$f_Y(y) = \begin{cases} \binom{n}{y} p^y (1-p)^{n-y} & \text{for } y = 0, 1, ..., n \\ 0 & \text{otherwise} \end{cases}$$

Example 8.5 (Homework): Let $Y_1 \sim Binomial(3, 0.6)$, $Y_2 \sim Binomial(8, 0.6)$, and $Y_3 \sim Binomial(6, 0.6)$ be three independent random variables. Use the MGF method to find the distribution of $Y = \sum_{j=1}^{3} Y_j$.

Example 8.6: (Additive property of Poisson distribution) Let $X_1 \sim Poisson(\lambda_1)$ and $X_2 \sim Poisson(\lambda_2)$ be two independent random variables. Use the MGF method to find the distribution of $Y = X_1 + X_2$.

Solution: Since $X_1 \sim Poisson(\lambda_1)$ and $X_2 \sim Poisson(\lambda_2)$, then

$$M_{X_1}(t) = e^{\lambda_1(e^t - 1)}$$
 and $M_{X_2}(t) = e^{\lambda_2(e^t - 1)}$

Further, since X_1 and X_2 are independent, we have

$$M_{(Y)}(t) = M_{X_1}(t)M_{X_2}(t)$$

$$= e^{\lambda_1(e^t - 1)}e^{\lambda_2(e^t - 1)}$$

$$= e^{\lambda_1(e^t - 1) + \lambda_2(e^t - 1)}$$

$$= e^{(\lambda_1 + \lambda_1)(e^t - 1)}$$

that is, $Y \sim Poisson(\lambda_1 + \lambda_2)$. Hence the density function of $Y = X_1 + X_2$ is given by

$$f_Y(y) = \begin{cases} \frac{e^{-(\lambda_1 + \lambda_2)}(\lambda_1 + \lambda_2)^y}{y!} & \text{for } y = 0, 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

Example 8.7 (Homework): Let X_1, X_2 , and X_3 be three independent random variables from Poisson distribution with $\lambda_j = j$, for j = 1, 2, 3. Find the distribution of (1) $W = X_1 + X_2$, (2) $Y = X_1 + X_2 + X_3$, and (3) $Z = X_2 + X_3$.

Example 8.8: Let $X_1, X_2, ..., X_k$ be k independent random variables from $N(\mu_j, \sigma_j^2)$, for j = 1, 2, ..., k. Find the distribution of $Y = \sum_{j=1}^k X_j$.

Solution: Since $X_j \sim N(\mu_j, \sigma_j^2)$, then

$$M_{X_j}(t) = e^{t\mu_j + \frac{1}{2}t^2\sigma_j^2}$$

Further, since $X_1, X_2, ..., X_k$ are independent, we have

$$M_{(Y)}(t) = M_{X_1}(t)M_{X_1}(t)\cdots M_{X_k}(t)$$

$$= \prod_{j=1}^k \left(e^{t\mu_j + \frac{1}{2}t^2\sigma_j^2}\right)$$

$$= \left(e^{t\mu_1 + \frac{1}{2}t^2\sigma_1^2}\right) \left(e^{t\mu_2 + \frac{1}{2}t^2\sigma_2^2}\right) \cdots \left(e^{t\mu_k + \frac{1}{2}t^2\sigma_k^2}\right)$$

$$= e^{t\mu_1 + \frac{1}{2}t^2\sigma_1^2 + t\mu_2 + \frac{1}{2}t^2\sigma_2^2 + \cdots + t\mu_k + \frac{1}{2}t^2\sigma_k^2}$$

$$= e^{t\sum_{j=1}^k \mu_j + \frac{1}{2}t^2\sum_{j=1}^k \sigma_j^2}$$

that is, $Y \sim N(\mu_Y, \sigma_Y^2)$, where $\mu_Y = \sum_{j=1}^k \mu_j$, and $\sigma_Y^2 = \sum_{j=1}^k \sigma_j^2$. Hence the density function of $Y = \sum_{j=1}^k X_j$ is given by

$$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_Y} e^{-\frac{1}{2}\left(\frac{Y-\mu_Y}{\sigma_Y}\right)^2}$$

Properties of the linear transformation of normal random variables:

- 1. If $X \sim N(\mu, \sigma^2)$, then Y = aX + b follows a $N(\mu_Y, \sigma_Y^2)$, where $\mu_Y = a\mu + b$, and $\sigma_Y^2 = a^2\sigma^2$.
- 2. If $X_1, X_2, ..., X_n$ are n independent random variables with $X_j \sim N(\mu_j, \sigma_j^2)$, for j = 1, 2, ..., n. Then $Y = \sum_{j=1}^n a_j X_j$ has a $N(\mu_Y, \sigma_Y^2)$, where $\mu_Y = \sum_{j=1}^n a_j \mu_j$, and $\sigma_Y^2 = \sum_{j=1}^n a_j^2 \sigma_j^2$.

Example 8.9 (Homework): Let $X_1, X_2, ..., X_k$ be k independent random variables from $N(\mu, \sigma^2)$. Find the distribution of $Y = \sum_{j=1}^k X_j$.

Example 8.10: Let $X_1, X_2, ..., X_n$ be n independent random variables from $N(\mu, \sigma^2)$. Show that the distribution of $\bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j$ is $N(\mu, \frac{\sigma^2}{n})$.

Solution: Since $X_j \sim N(\mu, \sigma^2)$, then

$$M_{X_j}(t) = e^{t\mu + \frac{1}{2}t^2\sigma^2},$$
 for $j = 1, 2, ..., n$

Further, since $X_1, X_2, ..., X_n$ are independent, we have

$$M_{(\bar{X})}(t) = E\left[e^{t\bar{X}}\right]$$

$$= E\left[e^{t\left(\frac{\sum_{j=1}^{n} X_{j}}{n}\right)}\right]$$

$$= E\left[e^{\frac{t}{n}(X_{1} + X_{2} + \dots + X_{n})}\right]$$

$$= E\left[e^{\frac{t}{n}X_{1}}\right] E\left[e^{\frac{t}{n}X_{2}}\right] \cdots E\left[e^{\frac{t}{n}X_{n}}\right]$$

$$= M_{(X_{1})}(t/n)M_{(X_{2})}(t/n) \cdots M_{(X_{n})}(t/n)$$

$$= \left(e^{\frac{t}{n}\mu + \frac{1}{2}\frac{t^{2}}{n^{2}}\sigma^{2}}\right) \left(e^{\frac{t}{n}\mu + \frac{1}{2}\frac{t^{2}}{n^{2}}\sigma^{2}}\right) \cdots \left(e^{\frac{t}{n}\mu + \frac{1}{2}\frac{t^{2}}{n^{2}}\sigma^{2}}\right)$$

$$= \left(e^{\frac{t}{n}\mu + \frac{1}{2}t^{2}\frac{\sigma^{2}}{n^{2}}}\right)^{n} = e^{t\mu + \frac{1}{2}t^{2}\frac{\sigma^{2}}{n}}$$

hence $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$. The PDF of \bar{X} is

$$f_Y(y) = \frac{1}{\sqrt{2\pi} \frac{\sigma}{\sqrt{n}}} e^{-\frac{1}{2} \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2}$$
$$= \frac{\sqrt{n}}{\sqrt{2\pi} \sigma} e^{-\frac{n}{2\sigma^2} \left(\bar{X} - \mu\right)^2}$$

Example 8.11 (Homework): Let $X \sim N(\mu, \sigma^2)$. Use the change-of-variable technique and the MGF method to find the distribution of Y = aX + b, where a and b are real numbers.

Example 8.12 (Homework): Let $X \sim N(\mu, \sigma^2)$. Use the MGF method to find the distribution of $Z = \frac{X-\mu}{\sigma}$.

Example 8.13: Let $X \sim Uniform(0,1)$. Find the distribution of $Y = -\frac{\ln X}{2}$ using the MGF method.

Solution:

$$M_{Y}(t) = E[e^{tY}]$$

$$= E\left[e^{t\left(-\frac{\ln X}{2}\right)}\right]$$

$$= E\left[e^{\left(-\frac{t}{2}\right)(\ln X)}\right]$$

$$= E\left[\left(e^{-\ln X}\right)^{-\frac{t}{2}}\right]$$

$$= E\left[X^{-\frac{t}{2}}\right]$$

$$= \int_{0}^{1} X^{-\frac{t}{2}} dx$$

$$= \frac{X^{-\frac{t}{2}+1}}{-\frac{t}{2}+1}\Big|_{0}^{1}$$

$$= \frac{1}{1-\frac{t}{2}} = \frac{2}{2-t}$$

that is, $Y \sim Expo(2)$.

Example 8.14: (Additive property of Exponential distribution) Let $X_j \sim Expo(\lambda)$, for j = 1, 2, ..., k, are k independent random variables. Find the distribution of $Y = \sum_{j=1}^k X_j$ using the MGF method.

Solution:

$$M_{Y}(t) = E[e^{tY}]$$

$$= E\left[e^{t(X_{1} + X_{2} + \dots + X_{k})}\right]$$

$$= E\left[e^{tX_{1}}e^{tX_{2}} \cdots e^{tX_{k}}\right]$$

$$= E\left[e^{tX_{1}}\right] E\left[e^{tX_{2}}\right] \cdots E\left[e^{tX_{k}}\right]$$

$$= \left(\frac{\lambda}{\lambda - t}\right) \left(\frac{\lambda}{\lambda - t}\right) \cdots \left(\frac{\lambda}{\lambda - t}\right)$$

$$= \left(\frac{\lambda}{\lambda - t}\right)^{k}$$

that is, $Y \sim Gamma(k, \lambda)$.

Example 8.15: (Additive property of Gamma distribution) Let $X_j \sim Gamma(\alpha, \beta)$, for j = 1, 2, ..., k, are k independent random variables. Find the distribution of $Y = \sum_{j=1}^k X_j$ using the MGF method.

Solution:

$$M_{Y}(t) = E[e^{tY}]$$

$$= E\left[e^{t(X_{1} + X_{2} + \dots + X_{k})}\right]$$

$$= E\left[e^{tX_{1}}e^{tX_{2}} \cdots e^{tX_{k}}\right]$$

$$= E\left[e^{tX_{1}}\right] E\left[e^{tX_{2}}\right] \cdots E\left[e^{tX_{k}}\right]$$

$$= \left(\frac{\beta}{\beta - t}\right)^{\alpha} \left(\frac{\beta}{\beta - t}\right)^{\alpha} \cdots \left(\frac{\beta}{\beta - t}\right)^{\alpha}$$

$$= \left(\frac{\beta}{\beta - t}\right)^{k\alpha}$$

that is, $Y \sim Gamma(k\alpha, \beta)$.