Bivariate Transformations:

Theorem 9.1: Let X and Y be two continuous random variables with joint density $f_{X,Y}(x,y)$. Let $U = g_1(X,Y)$ and $V = g_2(X,Y)$ be functions of X and Y. If $g_1(x,y)$ and $g_2(x,y)$ are invertible functions such that x and y can be written as $x = h_1(u,v)$ and $y = h_2(u,v)$, then the joint density of U and V is given by:

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v)) |J|$$

where

$$J = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \cdot \frac{\partial y}{\partial u}$$

Steps of the bivariate transformation approach:

- 1. Find the support of U and V.
- 2. Solve for the inverse of the transformations; i.e., find $x = h_1(u, v)$ and $y = h_2(u, v)$.
- 3. Obtain $\frac{\partial x}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial u}$, and $\frac{\partial y}{\partial v}$.
- 4. Calculate

$$J = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \cdot \frac{\partial y}{\partial u}$$

5. The joint PDF of U and V is

$$f_{U,V}(u,v) = f_{X,Y}(h_1(u,v), h_2(u,v)) |J|$$

Example 9.1: Let X and Y be two independent random variables both follows $Gamma(\alpha, \beta)$. If $U = \frac{X}{X+Y}$, V = X+Y, find the joint PDF of U and V. Then find the marginal PDF of U.

Solution: Since X and Y are independent random variables both from $Gamma(\alpha, \beta)$, then the joint PDF of X and Y is

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

$$= \left(\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}\right) \left(\frac{\beta^{\alpha}}{\Gamma(\alpha)}y^{\alpha-1}e^{-\beta y}\right)$$

$$= \frac{\beta^{2\alpha}}{\Gamma(\alpha)\Gamma(\alpha)}(xy)^{\alpha-1}e^{-\beta(x+y)}$$

for $x, y \ge 0$, and $\alpha, \beta > 0$.

Now we need to find the support of U and V. We have v=x+y, and $x,y\geq 0$, therefore $v\geq 0$. We also have $u=\frac{x}{x+y}$, and $x,y\geq 0$, therefore $0\leq u\leq 1$ Now we need to find the inverse of U and V. That is

$$v = x + y \implies y = v - x \dots (1)$$

 $u = \frac{x}{x + y} \implies x = uv \dots (2)$

substitute 2 in 1, we get

$$y = v - uv$$

Thus $\frac{\partial x}{\partial u} = v$, $\frac{\partial x}{\partial v} = u$, $\frac{\partial y}{\partial u} = -v$, and $\frac{\partial y}{\partial v} = 1 - u$. Therefore

$$J = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

$$= \det \begin{pmatrix} v & u \\ -v & 1 - u \end{pmatrix}$$

$$= |v(1 - u) - (u(-v))|$$

$$= |v - uv - uv| = v$$

therefor the joint PDF of U and V is

$$f_{U,V}(u,v) = f_{X,Y}(u,v) |J|$$

$$= \frac{\beta^{2\alpha}}{\Gamma(\alpha)\Gamma(\alpha)} (uv(v-uv))^{\alpha-1} e^{-\beta(uv+v-uv)}(v)$$

$$= \frac{\beta^{2\alpha}}{\Gamma(\alpha)\Gamma(\alpha)} v^{2\alpha-1} (u(1-u))^{\alpha-1} e^{-\beta v}$$

Hence

$$f_{U,V}(u,v) = \begin{cases} \frac{\beta^{2\alpha}}{\Gamma(\alpha)\Gamma(\alpha)} v^{2\alpha-1} (u(1-u))^{\alpha-1} e^{-\beta v} & \text{for } 0 \le u \le 1, \text{ and } v \ge 0 \\ \\ 0 & \text{otherwise} \end{cases}$$

to find the marginal PDF of ${\cal U}$

$$f_U(u) = \int_0^\infty \frac{\beta^{2\alpha}}{\Gamma(\alpha)\Gamma(\alpha)} v^{2\alpha - 1} (u(1 - u))^{\alpha - 1} e^{-\beta v} dv$$
$$= \frac{\beta^{2\alpha}}{\Gamma(\alpha)\Gamma(\alpha)} (u(1 - u))^{\alpha - 1} \int_0^\infty v^{2\alpha - 1} e^{-\beta v} dv$$

Notice that $v^{2\alpha-1}e^{-\beta v}$ is the kernel of $Gamma(2\alpha,\beta)$ distribution. Therefore

$$\int_0^\infty v^{2\alpha-1}e^{-\beta v}dv = \frac{\Gamma(2\alpha)}{\beta^{2\alpha}}$$

so that

$$f_U(u) = \frac{\beta^{2\alpha}}{\Gamma(\alpha)\Gamma(\alpha)} (u(1-u))^{\alpha-1} \frac{\Gamma(2\alpha)}{\beta^{2\alpha}}$$
$$= \frac{\Gamma(2\alpha)}{\Gamma(\alpha)\Gamma(\alpha)} u^{\alpha-1} (1-u)^{\alpha-1}$$

for 0 < u < 1. Notice that U has a $Beta(\alpha, \alpha)$ distribution.

Definition 9.1 (Convergence in Distribution): Suppose X is a random variable with cumulative density function F(x) and the sequence $X_1, X_2, X_3, ...$ of random variables with cumulative density functions $F_1(x), F_2(x), F_3(x), ...$, respectively. The sequence X_n converges in distribution to X, denoted $X_n \stackrel{D}{\to} X$ if

$$\lim_{n \to \infty} F_n(x) = F(x)$$

for all values x at which F(x) is continuous. The distribution of X is called the limiting distribution of X_n .

Example 9.1: Let $X_2, X_3, X_4, ...$ be a sequence of random variable such that

$$F_{X_n}(x) = \begin{cases} 1 - \left(1 - \frac{1}{n}\right)^{nx} & \text{for } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Show that X_n converges in distribution to Expo(1).

Solution:

$$\lim_{n \to \infty} F_{X_n}(x) = \lim_{n \to \infty} 1 - \left(1 - \frac{1}{n}\right)^{nx}$$
$$= 1 - \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{nx}$$
$$= 1 - e^{-x}$$

the later is the CDF of exponential distribution with rate $\lambda = 1$. Hence $X_n \stackrel{D}{\to} X$, and $X \sim Expo(1)$.

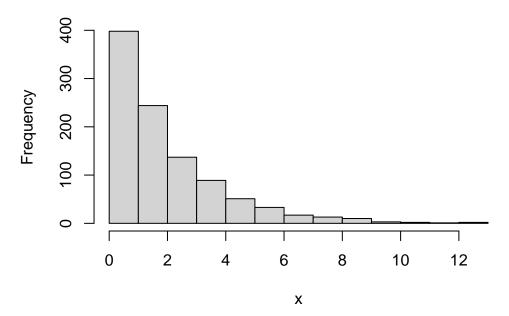
Theorem 9.2 (Central Limit Theorem CLT): Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution with mean μ and variance $\sigma^2 < \infty$, then the limiting distribution of $Z_n = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ is N(0, 1). That is, Z_n converges in distribution to Z, where $Z \sim N(0, 1)$.

Example 9.2 (simulation example): Let $x_1, x_2, ..., x_n$ be a random sample of size n = 1000 from $Expo(\lambda)$, for $\lambda = 0.5$. Use R to show that $\bar{X}_n \stackrel{D}{\to} Y$, where $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$, and $Y \sim N(2,4)$. Also show that $Z_n \stackrel{D}{\to} Z$, where $Z_n = \frac{\bar{X}_n - \frac{1}{\lambda}}{\frac{1/\lambda}{\sqrt{n}}}$ $Z \sim N(0,1)$.

Solution: First, we need to generate a random sample of size 1000 from Expo(0.5) and plot the histogram of the generated sample

```
set.seed(3)
x <- rexp(1000, rate = 0.5)
hist(x)</pre>
```

Histogram of x



Then, we need to generate m samples from Expo(0.5), such that m is relatively large (say m=1000) and compute all means $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_m)$. Then, we plot the histogram for $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_m)$ with a N(2, 4) curve overlaid, and plot another histogram for the $(z_1, z_2, ..., z_m)$ with a N(0, 1) curve overlaid.

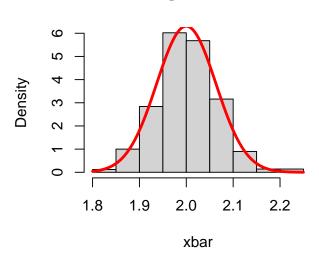
```
set.seed(3)
xbar <- 0
z.xbar <- 0

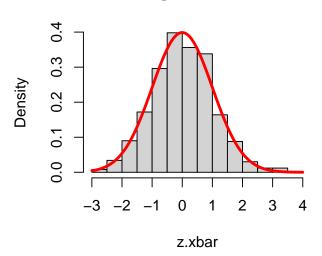
for (i in 1:1000){
    x <- rexp(1000, rate = 0.5)
    xbar[i] <- mean(x)
    z.xbar[i] <- (xbar[i] - 2)/(2/sqrt(1000))
}

par(mfrow = c(1, 2))
hist(xbar, freq = F, breaks = 10)
curve(dnorm(x, mean = 2, sd = 2/sqrt(1000)), add = T, col = "red", lwd = 3)
hist(z.xbar, freq = F, breaks = 10)
curve(dnorm(x), add = T, col = "red", lwd = 3)</pre>
```

Histogram of xbar

Histogram of z.xbar





Application of the CLT in Hypothesis Tests and Confidence Interval: CLT forms the basis for constructing confidence intervals, performing hypothesis tests, and applying various statistical techniques that rely on the assumption of a normal distribution. Here are some statistical tests that relies on the CLT:

• Suppose $X_1, X_2, ..., X_n$ are a random sample from a Bernoulli distribution with $P(X_i = 1) = 1 - P(X_i = 0) = p$, so that $E[X_i] = p$ and $Var(X_i) = p(1 - p)$. By the CLT,

$$Z = \frac{\bar{X} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

has an approximate standard normal distribution if n is large. Notice that \bar{X} is considered an estimate of p. Therefore, we can calculate the above statistic under the null hypothesis, where $p = p_0$, about the population proportion p. The CLT allows us to evaluate the test statistic using the standard normal distribution. In addition, we may construct $(1-\alpha)\%$ confidence intervals about

p. That is,

$$\bar{x} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

• In linear regression, the quantity

$$t = \frac{\hat{\beta}_1 - \beta_1}{S(\hat{\beta}_1)}$$

follows a t-distribution. We may assume that $\beta_1 = \beta_{1(0)} = 0$ under the null hypothesis about. Therefore, for a sufficiently large n, the t statistic defined above converges in distribution to the standard normal distribution.